Skip to main content
Log in

Lightness constancy in reality, in virtual reality, and on flat-panel displays

  • Notes/Comments/Reply Manuscript
  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

Virtual reality (VR) displays are being used in an increasingly wide range of applications. However, previous work shows that viewers often perceive scene properties very differently in real and virtual environments and so realistic perception of virtual stimuli should always be a carefully tested conclusion, not an assumption. One important property for realistic scene perception is surface color. To evaluate how well virtual platforms support realistic perception of achromatic surface color, we assessed lightness constancy in a physical apparatus with real lights and surfaces, in a commercial VR headset, and on a traditional flat-panel display. We found that lightness constancy was good in all three environments, though significantly better in the real environment than on the flat-panel display. We also found that variability across observers was significantly greater in VR and on the flat-panel display than in the physical environment. We conclude that these discrepancies should be taken into account in applications where realistic perception is critical but also that in many cases VR can be used as a flexible alternative to flat-panel displays and a reasonable proxy for real environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. A more precise definition of reflectance takes into account the spectral distribution of the illumination and the spectral sensitivity of the human visual system. We will skirt details of photometry and colorimetry when they are not central to the discussion. For more information, see McCluney (1994) and Fairchild (2013).

  2. Alternatively, lightness is sometimes defined in terms of the perceived intensity of light reflected by a surface, relative to the light reflected by a white surface (Fairchild, 2013 p.88). We will follow the definition in the main text.

  3. This is ‘asymmetric’ matching because the reference and match stimuli are viewed under different illuminants.

References

  • Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the ‘light-from-above’ prior. Nature Neuroscience, 7(10), 1057–1058.

    Article  CAS  PubMed  Google Scholar 

  • Adelson, E. H. (2000). Lightness perception and lightness illusions. In M. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 339–351). The MIT Press.

    Google Scholar 

  • Allred, S. R., Radonjić, A., Gilchrist, A. L., & Brainard, D. H. (2012). Lightness perception in high dynamic range images: Local and remote luminance effects. Journal of Vision, 12(2), 7–7.

    Article  PubMed  Google Scholar 

  • Anderson, B. L., & Winawer, J. (2005). Image segmentation and lightness perception. Nature, 434(7029), 79–83.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Arend, L. E., Reeves, A., Schirillo, J., & Goldstein, R. (1991). Simultaneous color constancy: Papers with diverse munsell values. Journal of the Optical Society of America A, 8, 661–672.

    Article  ADS  Google Scholar 

  • Barron, J. T., & Malik, J. (2015). Shape, illumination, and reflectance from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1670–1687.

    Article  PubMed  Google Scholar 

  • Belhumeur, P. N., Kriegman, D. J., & Yuille, A. L. (1999). The bas-relief ambiguity. International Journal of Computer Vision, 35(1), 33–44.

    Article  Google Scholar 

  • Berkman, M. I., & Akan, E. (2019). Presence and immersion in virtual reality. In N. Lee (Ed.), Encyclopedia of computer graphics and games. Springer.

    Google Scholar 

  • Blakeslee, B., Reetz, D., & McCourt, M. (2008). Coming to terms with lightness and brightness: Effects of stimulus configuration and instructions on brightness and lightness judgments. Journal of Vision, 8(11), 1–18.

    Article  Google Scholar 

  • Bloj, M., Kersten, D., & Hurlbert, A. (1999). Perception of three-dimensional shape influences colour perception through mutual illumination. Nature, 402(6764), 877–879.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bloj, M., Ripamonti, C., Mitha, K., Hauck, R., Greenwald, S., & Brainard, D. H. (2004). An equivalent illuminant model for the effect of surface slant on perceived lightness. Journal of Vision, 4(9), 6.

    Article  Google Scholar 

  • Boyaci, H., Maloney, L. T., & Hersh, S. (2003). The effect of perceived surface orientation on perceived surface albedo in binocularly viewed scenes. Journal of Vision, 3(8), 541–553.

    Article  CAS  PubMed  Google Scholar 

  • Brainard, D. H. (1998). Color constancy in the nearly natural image. 2. Achromatic loci. Journal of the Optical Society of America A, 15, 307–325.

    Article  ADS  CAS  Google Scholar 

  • Brainard, D. H., & Maloney, L. T. (2011). Surface color perception and equivalent illumination models. Journal of Vision, 11(5), 1–1.

    Article  PubMed  Google Scholar 

  • Brunswik, E. (1928). Zur Entwicklung der Albedowahrnehmung. Zeitschrift für Psychologie, 109, 40–115.

    Google Scholar 

  • Creem-Regehr, S. H., Stefanucci, J. K., & Bodenheimer, B. (2022). Perceiving distance in virtual reality: Theoretical insights from contemporary technologies. Philosophical Transactions of the Royal Society B, 378(20210456), 1–12.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Chapman and Hall/CRC Press.

  • Elor, A., & Kurniawan, S. (2020). The ultimate display for physical rehabilitation: a bridging review on immersive virtual reality. Frontiers in Virtual Reality, 1(585993), 1–17.

    Google Scholar 

  • Fairchild, M. D. (2013). Color appearance models (3rd ed.). West Sussex, UK: John Wiley & Sons Ltd.

    Book  Google Scholar 

  • Fechner, G. (1860/1966). Elements of psychophysics. New York, NY: Holt, Rinehart and Winston.

  • Gil Rodríguez, R., Bayer, F., Toscani, M., Guarnera, D., Guarnera, G. C., & Gegenfurtner, K. R. (2022). Colour calibration of a head mounted display for colour vision research using virtual reality. SN Computer Science, 3(1), 1–10.

    Article  Google Scholar 

  • Gilchrist, A. (2006). Seeing black and white. New York: Oxford University Press.

    Book  Google Scholar 

  • Greengard, S. (2019). Virtual reality. The MIT Press.

    Book  Google Scholar 

  • Guarnera, D., Guarnera, G. C., Ghosh, A., Denk, C., & Glencross, M. (2016). Brdf representation and acquisition. Computer Graphics Forum, 35, 625–650.

    Article  Google Scholar 

  • Hartle, B., & Wilcox, L. M. (2022). Stereoscopic depth constancy for physical objects and their virtual counterparts. Journal of Vision, 22(4), 1–19.

    Article  Google Scholar 

  • Hibbard, P. B. (2023). Virtual reality for vision science. In Topics in behavioral neurosciences (pp. 1–29). Springer.

  • Jung, S., & Lindeman, R. W. (2021). Does realism improve presence in VR? Suggesting a model and metric for VR experience evaluation. Frontiers in Virtual Reality, 2(693327), 1–7.

    Google Scholar 

  • Kimura, K., Reichert, J. F., Olson, A., Pouya, O. R., Wang, X., Moussavi, Z., & Kelly, D. M. (2017). Orientation in virtual reality does not fully measure up to the real-world. Scientific Reports, 7(1), 1–8.

    Article  Google Scholar 

  • Kraft, J. M., & Brainard, D. H. (1999). Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Sciences, 96(1), 307–312.

    Article  ADS  CAS  Google Scholar 

  • Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research, 35(3), 389–412.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., & Chandraker, M. (2020). Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from a single image. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2475–2484

  • Linowes, J. (2020). Unity 2020 virtual reality projects: Learn vr development by building immersive applications and games with unity 2019.4 and later versions. Packt Publishing Ltd.

  • Marantz, A. (2016). Studio 360. The New Yorker, April 25, 2016, pp. 86–94

  • McCluney, R. (1994). Introduction to radiometry and photometry. Artech House, Inc.

  • Morgenstern, Y., Geisler, W. S., & Murray, R. F. (2014). Human vision is attuned to the diffuseness of natural light. Journal of Vision, 14(9), 1–18.

    Article  Google Scholar 

  • Murray, R. F., Patel, K. Y., & Wiedenmann, E. S. (2022). Luminance calibration of virtual reality displays in unity. Journal of Vision, 22(13):1 , 1–9.

  • Murray, R. F. (2021). Lightness perception in complex scenes. Annual Review of Vision Science, 7, 417–436.

    Article  PubMed  Google Scholar 

  • Ong, T., Wilczewski, H., Soni, H., Nisbet, Q., Paige, S. R., Barrera, J., & Bunnell, B. (2022). The symbiosis of virtual reality exposure therapy and telemental health: A review. Frontiers in Virtual Reality, 3(848066), 1–11.

    Google Scholar 

  • Ostrovsky, Y., Cavanagh, P., & Sinha, P. (2005). Perceiving illumination inconsistencies in scenes. Perception, 34(11), 1301–1314.

    Article  PubMed  Google Scholar 

  • Patel, K., Munasinghe, A., & Murray, R. (2018). Lightness matching and perceptual similarity. Journal of Vision, 18(5), 1–18.

    Article  PubMed  Google Scholar 

  • Radonjić, A., Pearce, B., Aston, S., Krieger, A., Dubin, H., Cottaris, N. P., & Hurlbert, A. C. (2016). Illumination discrimination in real and simulated scenes. Journal of Vision, 16(11), 1–18.

    Article  Google Scholar 

  • Rzepka, A. M., Hussey, K. J., Maltz, M. V., Babin, K., Wilcox, L. M., & Culham, J. C. (2023). Familiar size affects perception differently in virtual reality and the real world. Philosophical Transactions of the Royal Society B, 378(1869), 1–14.

    Article  Google Scholar 

  • Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332–339.

    Article  CAS  PubMed  Google Scholar 

  • Scarfe, P., & Glennerster, A. (2015). Using high-fidelity virtual reality to study perception in freely moving observers. Journal of Vision, 15(9), 3–3.

    Article  PubMed  Google Scholar 

  • Scarfe, P., & Glennerster, A. (2019). The science behind virtual reality displays. Annual Review of Vision Science, 5, 529–547.

    Article  PubMed  Google Scholar 

  • Slater, M., Lotto, B., Arnold, M. M., & Sánchez-Vives, M. V. (2009). How we experience immersive virtual environments: The concept of presence and its measurement. Anuario de Psicología, 40, 193–210.

  • Slater, M. (2018). Immersion and the illusion of presence in virtual reality. British Journal of Psychology, 109(3), 431–433.

    Article  PubMed  Google Scholar 

  • Thouless, R. (1931). Phenomenal regression to the real object. British Journal of Psychology, 21(4), 339–359.

    Google Scholar 

  • Toscani, M., Zdravković, S., & Gegenfurtner, K. R. (2016). Lightness perception for surfaces moving through different illumination levels. Journal of Vision, 16(15), 21–21.

    Article  PubMed  Google Scholar 

  • Unity Technologies. (2020). Unity, version 2019.3.3f1. Retrieved from https://docs.unity3d.com/2020.1/Documentation/Manual/UnityManual.html

  • Westerman, S. J., & Cribbin, T. (1998). Individual differences in the use of depth cues: Implications for computer- and video-based tasks. Acta Psychologica, 99, 293–310.

    Article  CAS  PubMed  Google Scholar 

  • Wilder, J. D., Adams, W. J., & Murray, R. F. (2019). Shape from shading under inconsistent illumination. Journal of Vision, 19(6), 2.

  • Xie, B., Alghofalli, R., Zhang, Y., Jiang, Y., Lobo, F. D., Li, C., & Yu, L.-F. (2021). A review on virtual reality skill training applications. Frontiers in Virtual Reality, 2(645153), 1–19.

    Google Scholar 

  • Xiong, J., Hsiang, E.-L., He, Z., Zhan, T., & Wu, S.-T. (2021). Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light: Science & Applications, 10(216), 1–30.

    Google Scholar 

  • Zhan, T., Yin, K., Xiong, J., He, Z., & Wu, S.-T. (2020). Augmented reality and virtual reality displays: Perspectives and challenges. iScience, 23(101397), 1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushbu Y. Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We assume that all surfaces are Lambertian. Let the reference stimulus have reflectance \(r_1\) and illuminance \(i_1\), so following Eq. 1 for a Lambertian surface, the luminance is \(\ell _1 = r_1 i_1 / \pi \). Let the observer’s match setting at the test stimulus be reflectance \(r_m\), under illuminance \(i_m\), and so have luminance \(\ell _m = r_m i_m / \pi \). If the observer has no lightness constancy and simply matches the luminance of the reference and test stimuli, then their match setting \(r_0\) satisfies \(r_0 i_m = r_1 i_1\), or \(r_0 = r_1 i_1 / i_m\). If we substitute this expression for \(r_0\) into Eq. 3 and solve for the match setting \(\log r_m\), we find

$$\begin{aligned} \log r_m = (\tau -1)(\log i_m - \log i_1) + \log r_1 \end{aligned}$$
(8)

which is an affine function of \(\log i_m\) with slope \(m=\tau -1\).

Appendix B

Fig. 10
figure 10

Results for additional observers in the lightness matching task. See caption of Fig. 5 for details

Fig. 11
figure 11

Results for additional observers in the lightness matching task. See caption of Fig. 5 for details

Fig. 12
figure 12

Results for additional observers in the lightness matching task. See caption of Fig. 5 for details

Fig. 13
figure 13

Results for an additional observer in the lightness matching task. See caption of Fig. 5 for details

Appendix C

Here we provide details of the bootstrapped significance tests of mean Thouless ratios.

Figure 6 shows Thouless ratios for each display method, reference reflectance, and observer. This data can be represented as a \(3 \times 3 \times 12\) matrix \(T_{ijk}\), where each entry is the Thouless ratio for display method i (an integer from 1 to 3), reference reflectance j (also an integer from 1 to 3), and observer k (an integer from 1 to 12). The red dots in Fig. 6 show mean Thouless ratios across observers, which can be represented as a \(3 \times 3\) matrix \(M_{ij}\), where each element is the average of \(T_{ijk}\) for k from 1 to 12.

On each bootstrap iteration, we simulate a repetition of the experiment by creating a new \(3 \times 3 \times 12\) matrix \(T^{(b)}_{ijk}\) of Thouless ratios. We generate this matrix by choosing 12 observers with replacement from the 12 observers in the experiment. That is, each \(3 \times 3\) slice of \(T^{(b)}_{ijk}\) for a given value of k is a randomly chosen \(3 \times 3\) slice of the original data \(T_{ijk}\), representing the Thouless ratios of a single observer. (“With replacement” means that the observer’s data may appear more than once in the resampled matrix \(T^{(b)}_{ijk}\).) We then calculate the bootstrapped \(3 \times 3\) matrix of means \(M^{(b)}_{ij}\) by taking the average of \(T^{(b)}_{ijk}\) over k from 1 to 12.

We repeat this sampling procedure \(B=10^6\) times, producing B simulated repetitions of the experiment, represented as \(T^{(b)}_{ijk}\) and \(M^{(b)}_{ij}\), where b ranges from 1 to B.

This resampled data forms the basis of the bootstrapped significance tests. For example, to test whether the mean Thouless ratio in condition \(i=1\), \(j=1\) (say, the physical condition and reference reflectance 0.18) is significantly greater than the Thouless ratio in condition \(i=1\), \(j=2\) (say, the physical condition and reference reflectance 0.39), we find the proportion of bootstrapped samples for which \(M^{(b)}_{11}\) is greater than \(M^{(b)}_{12}\). If this is true for at least 95% of the samples, then we conclude that the first mean is significantly greater than the second mean at a significance level of \(p\) 0.05.

For additional details of bootstrapping methods, see Efron and Tibshirani (1994). We provide MATLAB code that implements these significance tests as Supporting Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K.Y., Wilcox, L.M., Maloney, L.T. et al. Lightness constancy in reality, in virtual reality, and on flat-panel displays. Behav Res (2024). https://doi.org/10.3758/s13428-024-02352-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.3758/s13428-024-02352-0

Keywords

Navigation