Abdel Rahman, R., & Aristei, S. (2010). Now you see it . . . and now again: Semantic interference reflects lexical competition in speech production with and without articulation. Psychonomic Bulletin and Review, 17(5), 657–661. https://doi.org/10.3758/PBR.17.5.657
Article
PubMed
Google Scholar
Abdel Rahman, R., & Melinger, A. (2009). Semantic context effects in language production: A swinging lexical network proposal and a review. Language and Cognitive Processes, 24(5), 713–734. https://doi.org/10.1080/01690960802597250
Article
Google Scholar
Abdel Rahman, R., & Melinger, A. (2019). Semantic processing during language production: an update of the swinging lexical network. Language, Cognition and Neuroscience, 34(9), 1176–1192. https://doi.org/10.1080/23273798.2019.1599970
Article
Google Scholar
Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. (2020a). Realistic precision and accuracy of online experiment platforms, web browsers, and devices. Behavior Research Methods, 1–22. https://doi.org/10.3758/s13428-020-01501-5
Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020b). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x
Article
PubMed
Google Scholar
Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack, T. R., Gouws, A. D., & Andrews, T. J. (2020). Power contours: Optimising sample size and precision in experimental psychology and human neuroscience. Psychological Methods. https://doi.org/10.1037/met0000337
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
Article
Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Article
Google Scholar
Baus, C., Strijkers, K., & Costa, A. (2013). When does word frequency influence written production? Frontiers in Psychology, 4, 1–9. https://doi.org/10.3389/fpsyg.2013.00963
Article
Google Scholar
Belke, E., Meyer, A. S., & Damian, M. F. (2005). Refractory effects in picture naming as assessed in a semantic blocking paradigm. The Quarterly Journal of Experimental Psychology Section A, 58(4), 667–692. https://doi.org/10.1080/02724980443000142
Article
Google Scholar
Bertram, R., Tønnessen, F. E., Strömqvist, S., Hyönä, J., & Niemi, P. (2015). Cascaded processing in written compound word production. Frontiers in Human Neuroscience, 9, 1–10. https://doi.org/10.3389/fnhum.2015.00207
Article
Google Scholar
Boersma, P., & Weenink, D. (2020). Praat: doing phonetics by computer [Computer program]. Version 6.1.16, retrieved 4 December 2020 fromhttp://www.praat.org/
Bonin, P., & Fayol, M. (2000). Writing words from pictures: What representations are activated, and when? Memory & Cognition, 28(4), 677–689. https://doi.org/10.3758/BF03201257
Article
Google Scholar
Bonin, P., Chalard, M., Méot, A., & Fayol, M. (2002). The determinants of spoken and written picture naming latencies. British Journal of Psychology, 93(1), 89–114. https://doi.org/10.1348/000712602162463
Article
PubMed
Google Scholar
Borrie, S. A., Barrett, T. S., & Yoho, S. E. (2019). Autoscore: An open-source automated tool for scoring listener perception of speech. The Journal of the Acoustical Society of America, 145(1), 392–399. https://doi.org/10.1121/1.5087276
Article
PubMed
PubMed Central
Google Scholar
Bosker, H. R. (2021). Using fuzzy string matching for automated assessment of listener transcripts in speech intelligibility studies. Behavior Research Methods. https://doi.org/10.3758/s13428-021-01542-4
Brandt, D. (2015). The Rise of Writing. Cambridge University Press. https://doi.org/10.1017/CBO9781316106372
Book
Google Scholar
Brauer, M., & Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159
Article
PubMed
Google Scholar
Breining, B., Nozari, N., & Rapp, B. (2016). Does segmental overlap help or hurt? Evidence from blocked cyclic naming in spoken and written production. Psychonomic Bulletin & Review, 23(2), 500–506. https://doi.org/10.3758/s13423-015-0900-x
Article
Google Scholar
Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PeerJ, 8, 1–29. https://doi.org/10.7717/peerj.9414
Article
Google Scholar
Bürki, A., Elbuy, S., Madec, S., & Vasishth, S. (2020). What did we learn from forty years of research on semantic interference? A Bayesian meta-analysis. Journal of Memory and Language, 114, 104125. https://doi.org/10.1016/j.jml.2020.104125
Article
Google Scholar
Caramazza, A., & Costa, A. (2000). The semantic interference effect in the picture-word interference paradigm: Does the response set matter? Cognition, 75(2), 51–64. https://doi.org/10.1016/S0010-0277(99)00082-7
Article
Google Scholar
Chen, J.-Y., & Li, C.-Y. (2011). Word form encoding in Chinese word naming and word typing. Cognition, 121(1), 140–146. https://doi.org/10.1016/j.cognition.2011.05.009
Article
PubMed
Google Scholar
Costa, A., Strijkers, K., Martin, C., & Thierry, G. (2009). The time course of word retrieval revealed by event-related brain potentials during overt speech. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21442–21446. https://doi.org/10.1073/pnas.0908921106
Article
PubMed
PubMed Central
Google Scholar
Crump, M. J. C., & Logan, G. D. (2010). Hierarchical control and skilled typing: Evidence for word-level control over the execution of individual keystrokes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1369–1380. https://doi.org/10.1037/a0020696
Article
PubMed
Google Scholar
Damian, M. F., Vigliocco, G., & Levelt, W. J. M. (2001). Effects of semantic context in the naming of pictures and words. Cognition, 81, 77–86.
Article
Google Scholar
de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12. https://doi.org/10.3758/s13428-014-0458-y
Article
PubMed
Google Scholar
Fairs, A., & Strijkers, K. (2021). Can we use the internet to study speech production? Yes we can! Evidence contrasting online versus laboratory naming latencies and errors. PsyArXiv. https://doi.org/10.31234/osf.io/2bu4c
FindingFive Team. (2019). FindingFive: A web platform for creating, running, and managing your studies in one place. FindingFive Corporation (nonprofit), NJ, USA. https://www.findingfive.com
Gallant, J., & Libben, G. (2019). No lab, no problem: Designing lexical comprehension and production experiments using PsychoPy3. The Mental Lexicon, 14(1), 152–168. https://doi.org/10.1075/ml.00002.gal
Article
Google Scholar
Gauvin, H. S., Jonen, M. K., Choi, J., McMahon, K. L., & de Zubicaray, G. I. (2018). No lexical competition without priming: Evidence from the picture–word interference paradigm. Quarterly Journal of Experimental Psychology, 71(12), 2562–2570. https://doi.org/10.1177/1747021817747266
Article
Google Scholar
Gilquin, G. (2010). Language production: A window to the mind? In H. Götzsche (Ed.), Memory, Mind and Language (pp. 89–102). Cambridge Scholar Publishing.
Google Scholar
Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504
Article
Google Scholar
Grootswagers, T. (2020). A primer on running human behavioural experiments online. Behavior Research Methods, 52(6), 2283–2286. https://doi.org/10.3758/s13428-020-01395-3
Article
PubMed
Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–83. https://doi.org/10.1017/S0140525X0999152X
Article
Google Scholar
Higashiyama, Y., Takeda, K., Someya, Y., Kuroiwa, Y., & Tanaka, F. (2015). The neural basis of typewriting: A functional MRI study. PLOS ONE, 10(7), e0134131. https://doi.org/10.1371/journal.pone.0134131
Article
PubMed
PubMed Central
Google Scholar
Hope, R. M. (2013). Rmisc: Ryan Miscellaneous. R package version 1.5. https://CRAN.R-project.org/package=Rmisc
Hourihan, K. L., & Churchill, L. A. (2020). Production of picture names improves picture recognition. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 74(1), 35–43. https://doi.org/10.1037/cep0000185
Article
PubMed
Google Scholar
Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006). Cumulative semantic inhibition in picture naming: Experimental and computational studies. Cognition, 100(3), 464–482. https://doi.org/10.1016/j.cognition.2005.02.006
Article
PubMed
Google Scholar
Hughes, J. W., & Schnur, T. T. (2017). Facilitation and interference in naming: A consequence of the same learning process? Cognition, 165, 61–72. https://doi.org/10.1016/J.COGNITION.2017.04.012
Article
PubMed
PubMed Central
Google Scholar
Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. Journal of the American Statistical Association, 84(406), 414–420. https://doi.org/10.1080/01621459.1989.10478785
Article
Google Scholar
Jaro, M. A. (1995). Probabilistic linkage of large public health data files. Statistics in Medicine, 14(5–7), 491–498. https://doi.org/10.1002/sim.4780140510
Article
PubMed
Google Scholar
Khan, M. (2020). RecordRTC. https://github.com/muaz-khan/RecordRTC
Kim, K. S., Wang, H., & Max, L. (2020). It’s about time: Minimizing hardware and software latencies in speech research with real-time auditory feedback. Journal of Speech, Language, and Hearing Research, 63(8), 2522–2534. https://doi.org/10.1044/2020_JSLHR-19-00419
Article
PubMed
PubMed Central
Google Scholar
Krantz, J. H., & Reips, U.-D. (2017). The state of web-based research: A survey and call for inclusion in curricula. Behavior Research Methods, 49(5), 1621–1629. https://doi.org/10.3758/s13428-017-0882-x
Article
PubMed
Google Scholar
Leiner, D. J. (2019). SoSci Survey (Version 3.1.06) [Computer software]. Available at https://www.soscisurvey.de
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioural and Brain Sciences, 22, 1–75. https://doi.org/10.3115/992628.992631
Article
Google Scholar
Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics–Doklady, 10(8), 707–710.
Google Scholar
Lo, S., & Andrews, S. (2015). To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 6, 1171. https://doi.org/10.3389/fpsyg.2015.01171
Article
PubMed
PubMed Central
Google Scholar
Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476–490. https://doi.org/10.3758/BF03210951
Article
Google Scholar
Logan, G. D., & Crump, M. J. C. (2011). Hierarchical control of cognitive processes: The case of skilled typewriting. In Psychology of Learning and Motivation - Advances in Research and Theory (1st ed., Vol. 54, pp. 1–27). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385527-5.00001-2
Chapter
Google Scholar
Lupker, S. J. (1979). The semantic nature of response competition in the picture-word interference task. Memory & Cognition, 7(6), 485–495. https://doi.org/10.3758/BF03198265
Article
Google Scholar
Mahon, B. Z., Costa, A., Peterson, R., Vargas, K. A., & Caramazza, A. (2007). Lexical selection is not by competition: A reinterpretation of semantic interference and facilitation effects in the Picture-Word Interference paradigm. Journal of Experimental Psychology: Learning Memory and Cognition, 33(3), 503–535. https://doi.org/10.1037/0278-7393.33.3.503
Article
Google Scholar
Masson, M. E. J., & Loftus, G. R. (2003). Using confidence intervals for graphically based data interpretation. In: Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale (Vol. 57, Issue 3, pp. 203–220). Canadian Psychological Association. https://doi.org/10.1037/h0087426
Mathot, S., & March, J. (2021, February 10). Conducting linguistic experiments online with OpenSesame and OSWeb. PsyArXiv. https://doi.org/10.31234/osf.io/wnryc
Morey, R. D. (2008). Confidence Intervals from Normalized Data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61–64. https://doi.org/10.20982/tqmp.04.2.p061
Article
Google Scholar
Mulatti, C., Calia, C., De Caro, M. F., & Della Sala, S. (2014). The cumulative semantic interference effect in normal and pathological ageing. Neuropsychologia, 65, 125–130. https://doi.org/10.1016/j.neuropsychologia.2014.10.007
Article
PubMed
Google Scholar
Navarrete, E., Mahon, B. Z., & Caramazza, A. (2010). The cumulative semantic cost does not reflect lexical selection by competition. Acta Psychologica, 134(3), 279–289. https://doi.org/10.1016/J.ACTPSY.2010.02.009
Article
PubMed
PubMed Central
Google Scholar
Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing Surveys, 33(1), 31–88. https://doi.org/10.1145/375360.375365
Article
Google Scholar
Oppenheim, G. M., Dell, G. S., & Schwartz, M. F. (2010). The dark side of incremental learning: A model of cumulative semantic interference during lexical access in speech production. Cognition, 114(2), 227–252. https://doi.org/10.1016/j.cognition.2009.09.00
Article
PubMed
Google Scholar
Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22–27. https://doi.org/10.1016/j.jbef.2017.12.004
Article
Google Scholar
Peer, E., Brandimarte, L., Samat, S., & Acquisti, A. (2017). Beyond the Turk: Alternative platforms for crowdsourcing behavioral research. Journal of Experimental Social Psychology, 70, 153–163. https://doi.org/10.1016/j.jesp.2017.01.006
Article
Google Scholar
Perret, C., & Laganaro, M. (2013). Why are written picture naming latencies (not) longer than spoken naming? Reading and Writing, 26(2), 225–239. https://doi.org/10.1007/s11145-012-9365-8
Article
Google Scholar
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(04), 329–347. https://doi.org/10.1017/S0140525X12001495
Article
Google Scholar
Pinet, S., & Nozari, N. (2018). “Twisting fingers”: The case for interactivity in typed language production. Psychonomic Bulletin & Review, 25(4), 1449–1457. https://doi.org/10.3758/s13423-018-1452-7
Article
Google Scholar
Pinet, S., & Nozari, N. (2020). Electrophysiological correlates of monitoring in typing with and without visual feedback. Journal of Cognitive Neuroscience, 32(4), 603–620. https://doi.org/10.1162/jocn_a_01500
Article
PubMed
Google Scholar
Pinet, S., & Nozari, N. (2021). The role of visual feedback in detecting and correcting typing errors: A signal detection approach. Journal of Memory and Language, 117, 104193. https://doi.org/10.1016/j.jml.2020.104193
Article
Google Scholar
Pinet, S., Hamamé, C. M., Longcamp, M., Vidal, F., & Alario, F. X. (2015). Response planning in word typing: Evidence for inhibition. Psychophysiology, 52(4), 524–531. https://doi.org/10.1111/psyp.12373
Article
PubMed
Google Scholar
Pinet, S., Dubarry, A.-S., & Alario, F.-X. (2016a). Response retrieval and motor planning during typing. Brain and Language, 159, 74–83. https://doi.org/10.1016/j.bandl.2016.05.012
Article
PubMed
Google Scholar
Pinet, S., Ziegler, J. C., & Alario, F.-X. (2016b). Typing is writing: Linguistic properties modulate typing execution. Psychonomic Bulletin & Review, 23(6), 1898–1906. https://doi.org/10.3758/s13423-016-1044-3
Article
Google Scholar
Pinet, S., Zielinski, C., Mathôt, S., Dufau, S., Alario, F.-X., & Longcamp, M. (2017). Measuring sequences of keystrokes with jsPsych: Reliability of response times and interkeystroke intervals. Behavior Research Methods, 49(3), 1163–1176. https://doi.org/10.3758/s13428-016-0776-3
Article
PubMed
Google Scholar
Qu, Q., & Damian, M. F. (2020). An electrophysiological analysis of the time course of phonological and orthographic encoding in written word production. Language, Cognition and Neuroscience, 35(3), 360–373. https://doi.org/10.1080/23273798.2019.1659988
Article
Google Scholar
Qu, Q., Zhang, Q., & Damian, M. F. (2016). Tracking the time course of lexical access in orthographic production: An event-related potential study of word frequency effects in written picture naming. Brain and Language, 159, 118–126. https://doi.org/10.1016/j.bandl.2016.06.008
Article
PubMed
Google Scholar
Qu, X., Mei, Q., Liu, P., & Hickey, T. (2020). Using EEG to distinguish between writing and typing for the same cognitive task. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12462 LNAI (pp. 66–74). https://doi.org/10.1007/978-3-030-60735-7_7
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Google Scholar
Reimers, S., & Stewart, N. (2015). Presentation and response timing accuracy in Adobe Flash and HTML5/JavaScript Web experiments. Behavior Research Methods, 47(2), 309–327. https://doi.org/10.3758/s13428-014-0471-1
Article
PubMed
Google Scholar
Roelofs, A. (2018). A unified computational account of cumulative semantic, semantic blocking, and semantic distractor effects in picture naming. Cognition, 172, 59–72. https://doi.org/10.1016/j.cognition.2017.12.007
Article
PubMed
Google Scholar
Rose, S. B., & Abdel Rahman, R. (2016). Semantic similarity promotes interference in the continuous naming paradigm: Behavioural and electrophysiological evidence. Language, Cognition and Neuroscience, 32(1), 55–68. https://doi.org/10.1080/23273798.2016.1212081
Article
Google Scholar
Roux, S., & Bonin, P. (2012). Cascaded processing in written naming: Evidence from the picture–picture interference paradigm. Language and Cognitive Processes, 27(5), 734–769. https://doi.org/10.1080/01690965.2011.580162
Article
Google Scholar
Roux, F., Armstrong, B. C., & Carreiras, M. (2017). Chronset: An automated tool for detecting speech onset. Behavior Research Methods, 49(5), 1864–1881. https://doi.org/10.3758/s13428-016-0830-1
Article
PubMed
Google Scholar
Scaltritti, M., Pinet, S., Longcamp, M., & Alario, F.-X. (2017). On the functional relationship between language and motor processing in typewriting: An EEG study. Language, Cognition and Neuroscience, 32(9), 1086–1101. https://doi.org/10.1080/23273798.2017.1283427
Article
Google Scholar
Schnur, T. T. (2014). The persistence of cumulative semantic interference during naming. Journal of Memory and Language, 75, 27–44. https://doi.org/10.1016/j.jml.2014.04.006
Article
Google Scholar
Snyder, K. M., Logan, G. D., & Yamaguchi, M. (2015). Watch what you type: The role of visual feedback from the screen and hands in skilled typewriting. Attention, Perception, & Psychophysics, 77(1), 282–292. https://doi.org/10.3758/s13414-014-0756-6
Article
Google Scholar
Speed, L. J., Wnuk, E., & Majid, A. (2018). Studying psycholinguistics out of the lab. In Research methods in psycholinguistics and the neurobiology of language: a practical guide (pp. 190–207). John Wiley & Sons, Inc.
Google Scholar
Stark, K. (2021a). Stringmatch_typed_naming (Release v01) [Computer software]. GitHub Repository. Retrieved 6 January, 2022 from https://github.com/kirstenstark/stringmatch_typed_naming
Stark, K. (2021b). Typing_RTs_JS (Version v02) [Computer software]. GitHub Repository. Retrieved 6 January, 2022 from https://github.com/kirstenstark/typing_RTs_JS
Starreveld, P. A., & La Heij, W. (2017). Picture-word interference is a Stroop effect: A theoretical analysis and new empirical findings. Psychonomic Bulletin and Review, 24, 721–733. https://doi.org/10.3758/s13423-016-1167-6
Article
PubMed
Google Scholar
Torrance, M., Nottbusch, G., Alves, R. A., Arfé, B., Chanquoy, L., Chukharev-Hudilainen, E., Dimakos, I., Fidalgo, R., Hyönä, J., Jóhannesson, Ó. I., Madjarov, G., Pauly, D. N., Uppstad, P. H., van Waes, L., Vernon, M., & Wengelin, Å. (2018). Timed written picture naming in 14 European languages. Behavior Research Methods, 50(2), 744–758. https://doi.org/10.3758/s13428-017-0902-x
Article
PubMed
Google Scholar
Van Casteren, M., & Davis, M. H. (2006). Mix, a program for pseudorandomization. Behavior Research Methods, 38(4), 584–589. https://doi.org/10.3758/BF03193889
Article
PubMed
Google Scholar
van der Loo, M. P. J. (2014). The stringdist package for approximate string matching. The R Journal, 16, 1–86. https://doi.org/10.32614/RJ-2014-011
Article
Google Scholar
van Scherpenberg, C., Just, A., & Hauber, R. (2020). Check voice onset times from chronset with Praat script. Retrieved 6 January 2022 from https://osf.io/fmwqb/
Vogt, A., Hauber, R., Kuhlen, A.K. et al. (2021) Internet-based language production research with overt articulation: Proof of concept, challenges, and practical advice. Behavior Research. https://doi.org/10.3758/s13428-021-01686-3
Zhang, Q., & Damian, M. F. (2010). Impact of phonology on the generation of handwritten responses: Evidence from picture-word interference tasks. Memory & Cognition, 38(4), 519–528. https://doi.org/10.3758/MC.38.4.519
Article
Google Scholar