Aharony, N., Pan, W., Ip, C., Khayal, I., and Pentland, A. (2011). Social fMRI: investigating and shaping social mechanisms in the real world. Pervas Mobile Comput. 7, 643–659
Article
Google Scholar
Aledavood, T., Lehmann, S., & Saramäki, J. (2018). Social network differences of chronotypes identified from mobile phone data. EPJ Data Science, 7(1), 18–20.
Article
Google Scholar
Alimomeni, M. (2014). New Notions of Secrecy and User Generated Randomness in Cryptography (Doctoral dissertation, University of Calgary).
Andrews, S., Ellis, D. A., Shaw, H., & Piwek, L. (2015). Beyond self-report: tools to compare estimated and real-world smartphone use. PLOS ONE, 10(10), e0139004.
Article
Google Scholar
Android. (2019a). UsageEvents.event [computer software]. Retrieved April 29, 2019, from https://developer.android.com/reference/android/app/usage/UsageEvents.Event
Android. (2019b). Save files on device storage [computer software]. Retrieved April 29, 2019, from https://developer.android.com/training/data-storage/files
Android. (2019c). FileProvider [computer software]. Retrieved April 29, 2019, from https://developer.android.com/reference/android/support/v4/content/FileProvider
Apple. (2019). Screen Time [Mobile application software]
Baumeister, R. F., Vohs, K. D., & Funder, D. C. (2007). Psychology as the science of self- reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science, 2(4), 396–403.
Article
Google Scholar
Barthelmäs, M., Killinger, M., & Keller, J. (2020). Using a Telegram chatbot as cost-effective software infrastructure for ambulatory assessment studies with iOS and Android devices. Behavior Research Methods, 1–8.
Bellovin, S. M. & Merritt, M. (1992). Encrypted key exchange: password-based protocols secure against dictionary attacks. In Proceedings 1992 IEEE Computer Society Symposium on Research in Security and Privacy (pp. 72–84). IEEE.
Boase, J., & Ling, R. (2013). Measuring Mobile Phone Use: Self-Report Versus Log Data. Journal of Computer-Mediated Communication, 18(4), 508–519.
Article
Google Scholar
Clayton, R. B., Leshner, G., & Almond, A. (2015). The extended iSelf: The impact of iPhone separation on cognition, emotion, and physiology. Journal of Computer-Mediated Communication, 20(2), 119–135.
Article
Google Scholar
Davidson, B. I., Ellis, D., Bowman, N., Liveley, G., Shaw, H., Przybylski, A. K., & Levine, M. (2019). Avoiding irrelevance: The manifestation and impacts of technophobia in psychological science. PsyArXiv, https://doi.org/10.31234/osf.io/b9f4p
Dennis, S., Garrett, P., Yim, H., Hamm, J., Osth, A. F., Sreekumar, V., & Stone, B. (2019). Privacy versus open science. Behavior Research Methods, 51(4), 1839–1848.
Article
Google Scholar
Doliński, D. (2018). Is psychology still a science of behaviour? Social Psychological Bulletin, 13, e25025.
Article
Google Scholar
Elhai, J. D., Dvorak, R. D., Levine, J. C., & Hall, B. J. (2017). Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. Journal of Affective Disorders, 207, 251–259.
Article
Google Scholar
Ellis, D. A. (2019). Are smartphones really that bad? improving the psychological measurement of technology-related behaviors. Computers in Human Behavior, 97, 60–66.
Article
Google Scholar
Ellis, D. A., Davidson, B. I., Shaw, H., & Geyer, K. (2019). Do smartphone usage scales predict behavior? International Journal of Human–Computer Studies, 130, 86–92.
Article
Google Scholar
Ellis, D. A. (2020). Smartphones within Psychological Science. Cambridge University Press
Facebook (2019) Messenger [Mobile application software]
Ferreira, D., Kostakos, V., and Dey, A. K. (2015). AWARE: mobile context instrumentation framework. Frontiers in ICT, 2(6), 1–9.
Google Scholar
Geyer, K., Ellis, D. A., & Piwek, L. (2019). A simple location-tracking app for psychological research. Behavior Research Methods, 51(6), 2840–2846.
Google LLC (2019). Digital Wellbeing [Mobile application software]
He, J., Chen, T., Wang, P., Wu, Z., & Yan, J. (2019). Android multitasking mechanism: Formal semantics and static analysis of apps. In Asian Symposium on Programming Languages and Systems (pp. 291–312). Springer, Cham.
Hinds, J., & Joinson, A. (2019). Human and computer personality prediction from digital footprints. Current Directions in Psychological Science, 28(2), 204–211.
Article
Google Scholar
Johannes, N., Meier, A., Reinecke, L., Ehlert, S., Setiawan, D., Walasek, N., Dienlin, T., Buijzen, M. & Harm, V. (2019). The Relationship Between Online Vigilance and Affective Well-Being in Everyday Life: Combining Smartphone Logging with Experience Sampling. PsyArXiv, https://doi.org/10.31234/osf.io/b9f4p
Johannes, N., Vuorre, M., & Przybylski, A. K. (2020). Video game play is positively correlated with well-being. PsyArXiv, https://doi.org/10.31234/osf.io/qrjza
Katevas, K., Arapakis, I., & Pielot, M. (2018). Typical phone use habits: Intense use does not predict negative well-being. In Proceedings of the 20th International Conference on Human–Computer Interaction with Mobile Devices and Services (p. 11). ACM.
Keil, T. F., Koschate, M., & Levine, M. (2020). Contact Logger: Measuring everyday intergroup contact experiences in near-time. Behavior Research Methods, 1–19.
Lepp, A., Barkley, J. E., & Karpinski, A. C. (2015). The relationship between cell phone use and academic performance in a sample of US college students. Sage Open, 5(1), 2158244015573169.
Article
Google Scholar
Marty-Dugas, J., Ralph, B. C., Oakman, J. M., & Smilek, D. (2018). The relation between smartphone use and everyday inattention. Psychology of Consciousness: Theory, Research, and Practice, 5(1), 46.
Google Scholar
Meier, A. and Reinecke, L. (2020). Computer-mediated communication, social media, and mental health: A conceptual and empirical meta-review. Communication Research, 1–28.
Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psychological Science, 7(3), 221–237.
Mozilla (2019). PDF.js [computer software] Retrieved April 29, 2019, from https://mozilla.github.io/pdf.js/.
Nelson, D. & Vu, K.-P. L. (2010). Effectiveness of image-based mnemonic techniques for enhancing the memorability and security of user-generated passwords. Computers in Human Behavior, 26(4), 705–715.
Article
Google Scholar
Novac, O. C., Novac, M., Gordan, C., Berczes, T., & Bujdosó, G. (2017, June). Comparative study of Google Android, Apple iOS and Microsoft Windows phone mobile operating systems. In 2017 14th International Conference on Engineering of Modern Electric Systems (EMES) (pp. 154–159). IEEE.
Ooms, J. (2020). Pdftools [computer software]. Retrieved February 3, 2020, from https://cran.r-project.org/web/packages/pdftools/pdftools.pdf
Orben, A., & Przybylski, A. K. (2019a). The association between adolescent well-being and digital technology use. Nature Human Behaviour, 3(2), 173.
Article
Google Scholar
Orben, A., & Przybylski, A. K. (2019b). Screens, teens, and psychological well-being: evidence from three time-use-diary studies. Psychological Science, 30(5), 682–696.
Article
Google Scholar
Orben, A., Dienlin, T., & Przybylski, A. K. (2019). Reply to Foster and Jackson: Open scientific practices are the way forward for social media effects research. Proceedings of the National Academy of Sciences, 116(31), 15334–15335.
Article
Google Scholar
Piwek, L., Ellis, D. A., & Andrews, S. (2016). Can programming frameworks bring smartphones into the mainstream of psychological science? Frontiers in Psychology, 7, 1252.
PubMed
PubMed Central
Google Scholar
Pliam, J. O. (2000). On the incomparability of entropy and marginal guesswork in brute-force attacks. In International Conference on Cryptology in India (pp. 67–79). Springer, Berlin, Heidelberg.
Richardson, M., Hussain, Z., & Griffiths, M. D. (2018). Problematic smartphone use, nature connectedness, and anxiety. Journal of Behavioral Addictions, 7(1), 109–116.
Article
Google Scholar
Reinfelder, L., Schankin, A., Russ, S., & Benenson, Z. (2018). An Inquiry into Perception and Usage of Smartphone Permission Models. In International Conference on Trust and Privacy in Digital Business (pp. 9–22). Springer, Cham.
Rosen, L. D., Lim, A. F., Felt, J., Carrier, L. M., Cheever, N. A., Lara-Ruiz, J. M., ... & Rokkum, J. (2014). Media and technology use predicts ill-being among children, preteens and teenagers independent of the negative health impacts of exercise and eating habits. Computers in Human Behavior, 35, 364–375.
Rosen, L., Carrier, L. M., Miller, A., Rokkum, J., & Ruiz, A. (2016). Sleeping with technology: cognitive, affective, and technology usage predictors of sleep problems among college students. Sleep Health, 2(1), 49–56.
Article
Google Scholar
Shaw, H., Ellis, D. A., Geyer, K., Davidson, B. I., Ziegler, F. V., & Smith, A. (2020). Quantifying smartphone ‘use’: Choice of measurement impacts relationships between ‘usage’ and health, Technology, Mind, and Behavior, 1 (2).
Sassenberg, K., & Ditrich, L. (2019). Research in Social Psychology Changed Between 2011 and 2016: Larger Sample Sizes, More Self-Report Measures, and More Online Studies. Advances in Methods and Practices in Psychological Science, 2515245919838781.
Turner, A., Topor, M., Stewart, A. J., Owen, N., Kenny, A. R., Jones, A. L., & Ellis, D. A. (2020). Open Code/Software: A primer from UKRN. OSF Preprints, https://doi.org/10.31219/osf.io/qw9ck.
Van Vliet, H., (2008). Software engineering: principles and practice. John Wiley & Sons.
Wilcockson, T. D., Ellis, D. A., & Shaw, H. (2018). Determining typical smartphone usage: what data do we need? Cyberpsychology, Behavior, and Social Networking, 21(6), 395–398.
Article
Google Scholar
Xu, R., Frey, R. M., Fleisch, E., & Ilic, A. (2016). Understanding the impact of personality traits on mobile app adoption–insights from a large-scale field study. Computers in Human Behavior, 62, 244–256.
Article
Google Scholar
Zetetic. (2019). SQLCipher [computer software]. Retrieved April 29, 2019, from https://www.zetetic.net/sqlcipher/sqlcipher-for-android/