American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR (4th ed., text rev.). Washington, DC, USA: American Psychiatric Association.
Bache, S.M., & Wickham, H. (2014). magrittr: A Forward-Pipe Operator for R. R package version 1.5. https://CRAN.R-project.org/package=magrittr.
Barzel, B., & Biham, O. (2009). Quantifying the connectivity of a network: The network correlation function method. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 80(4), 046104. arXiv:0910.3366.
Article
Google Scholar
Bland, J.M., & Altman, D.G. (1995). Multiple significance tests: the Bonferroni method. Bmj, 310(6973), 170.
Article
PubMed
PubMed Central
Google Scholar
Bollen, K.A., & Stine, R.A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205–229.
Article
Google Scholar
Borsboom, D., & Cramer, A.O.J. (2013). Network analysis: an integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.
Article
PubMed
Google Scholar
Boschloo, L., Van Borkulo, C.D., Rhemtulla, M., Keyes, K.M., Borsboom, D., & Schoevers, R.A. (2015). The network structure of symptoms of the diagnostic and statistical manual of mental disorders. PLoS ONE, 10(9), e0137621.
Bringmann, L.F., Lemmens, L.H., Huibers, M.J., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck depression inventory-II. Psychological Medicine, 45(04), 747–757.
Article
PubMed
Google Scholar
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771.
Article
Google Scholar
Chernick, M.R. (2011). Bootstrap methods: a guide for practitioners and researchers. New York: Wiley.
Book
Google Scholar
Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic Press.
Google Scholar
Cohen, J. (1994). The earth is round (p <0.05). American Psychologist, 49(12), 997–1003. Retrieved from http://doi.apa.org/getdoi.cfm?doi=10.1037/0003-066X.49.12.997.
Article
Google Scholar
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L.J., & Cramer, A.O.J. (2015a). State of the aRt personality research: a tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13–29.
Costantini, G., Richetin, J., Borsboom, D., Fried, E.I., Rhemtulla, M., & Perugini, M. (2015b). Development of indirect measures of conscientiousness: combining a facets approach and network analysis. European Journal of Personality, 29(5), 548–567.
Costenbader, E., & Valente, T.W. (2003). The stability of centrality measures when networks are sampled. Social Networks, 25(4), 283–307.
Article
Google Scholar
Cramer, A.O.J., Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S.H., & Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: you can’t like parties if you don’t like people. European Journal of Personality, 26(4), 414–431.
Article
Google Scholar
Cramer, A.O.J., Waldorp, L., van der Maas, H., & Borsboom, D. (2010). Comorbidity: A Network Perspective. Behavioral and Brain Sciences, 33(2-3), 137–150.
Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H.L.J. (2016). Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model. Psychological Review, 123(1), 2–22.
Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1), 1–26.
Article
Google Scholar
Epskamp, S., & Fried, E.I. (2016). A tutorial on estimating regularized partial correlation networks. arXiv:1607.01367.
Epskamp, S. (2014). IsingSampler: sampling methods and distribution functions for the Ising model. R package version 0.1.1. Retrieved from github.com/SachaEpskamp/ IsingSampler.
Epskamp, S. (2016). Regularized Gaussian Psychological Networks: Brief Report on the Performance of Extended BIC Model Selection. arXiv:1606.05771.
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2016). Generalized network psychometrics: combining network and latent variable models. Psychometrika. in press.
Epskamp, S., Cramer, A.O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18.
Article
Google Scholar
Foa, E.B., Riggs, D.S., Dancu, C.V., & Rothbaum, B.O. (1993). Reliability and validity of a brief instrument for assessing post-traumatic stress disorder. Journal of Traumatic Stress, 6(4), 459–473.
Article
Google Scholar
Forbush, K., Siew, C., & Vitevitch, M. (2016). Application of network analysis to identify interactive systems of eating disorder psychopathology. Psychological Medicine, 46(12), 2667–2677.
Article
PubMed
Google Scholar
Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 23, 20200–2028.
Google Scholar
Foygel Barber, R., & Drton, M. (2015). High-dimensional Ising model selection with Bayesian information criteria. Electronic Journal of Statistics, 9(1), 5670–607.
Google Scholar
Fried, E.I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, O.J., & Stroebe, M. (2015). From loss to loneliness: The relationship between bereavement and depressive symptoms. Journal of Abnormal Psychology, 124(2), 256–265.
Article
PubMed
Google Scholar
Fried, E.I., Epskamp, S., Nesse, R.M., Tuerlinckx, F., & Borsboom, D. (2016). What are ‘good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314–320.
Article
PubMed
Google Scholar
Friedman, J.H., Hastie, T., & Tibshirani, R. (2014). Glasso: graphical lasso- estimation of Gaussian graphical models. R package version 1.8. Retrieved from https://CRAN.Rproject.org/package=glasso.
Friedman, J.H., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.
Article
PubMed
Google Scholar
Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., & Hothorn, T. (2008). Mvtnorm: multivariate normal and t distributions. R package version 0.9-2. Retrieved from http://CRAN.R-project.org/package=mvtnorm.
Gumbel, E.J. (1939). La probabilité des hypotheses. Comptes Rendus de l’Academie des Sciences (Paris), 209, 645–647.
Google Scholar
Haslbeck, J.M.B., & Waldorp, L.J. (2016a). mgm: structure estimation for time-varying mixed graphical models in high-dimensional data. arXiv:1510.06871.
Haslbeck, J.M.B., & Waldorp, L.J. (2016b). Structure estimation for mixed graphical models in high dimensional data. arXiv:1510.05677.
Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: the lasso and generalizations. Boca Raton, FL, USA: CRC Press.
Hien, D.A., Wells, E.A., Jiang, H., Suarez-Morales, L., Campbell, A.N., Cohen, L.R., Zhang, Y., & et al. (2009). Multisite randomized trial of behavioral interventions for women with co-occurring ptsd and substance use disorders. Journal of Consulting and Clinical Psychology, 77(4), 607–619.
Article
PubMed
PubMed Central
Google Scholar
Hyndman, R.J., & Fan, Y. (1996). Sample quantiles in statistical packages. The American Statistician, 50 (4), 361–365.
Google Scholar
Isvoranu, A.M., Borsboom, D., van Os, J., & Guloksuz, S. (2016). A Network Approach to Environmental Impact in Psychotic Disorders: Brief Theoretical Framework. Schizophrenia Bulletin, 42(4), 870–873.
Isvoranu, A.M., van Borkulo, C.D., Boyette, L., Wigman, J.T.W., Vinkers, C.H., Borsboom, D., & GROUP Investigators (2017). A Network Approach to Psychosis: Pathways between Childhood Trauma and Psychotic Symptoms. Schizophrenia bulletin, 43(1), 187–196.
Kolaczyk, E.D. (2009). Statistical analysis of network data. New York: Springer.
Book
Google Scholar
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. Cambridge, MA, USA: MIT Press.
Kossakowski, J.J., Epskamp, S., Kieffer, J.M., van Borkulo, C.D., Rhemtulla, M., & Borsboom, D. (2015). The application of a network approach to health-related quality of life (HRQoL): introducing a new method for assessing HRQoL in healthy adults and cancer patient. Quality of Life Research, 25, 781–92.
Krämer, N., Schäfer, J., & Boulesteix, A.-L. (2009). Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics, 10(1), 1–24.
Article
Google Scholar
Lauritzen, S.L. (1996). Graphical models. Oxford: Clarendon Press.
Google Scholar
Liu, H., Han, F., Yuan, M., Lafferty, J.D., & Wasserman, L. (2012). High-dimensional semiparametric Gaussian copula graphical models. The Annals of Statistics, 40(4), 2293–2326.
Article
Google Scholar
MacCallum, R.C., Wegener, D.T., Uchino, B.N., & Fabrigar, L.R. (1993). The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114(1), 185–199.
Article
PubMed
Google Scholar
McNally, R.J., Robinaugh, D.J., Wu, G.W., Wang, L., Deserno, M.K., & Borsboom, D. (2015). Mental disorders as causal systems a network approach to posttraumatic stress disorder. Clinical Psychological Science, 3 (6), 836–849.
Article
Google Scholar
Newman, M.E.J. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131.
Article
Google Scholar
Newman, M.E.J. (2010). Networks: an introduction, Oxford University Press, Oxford.
Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716–aac4716.
Article
Google Scholar
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: generalizing degree and shortest paths. Social Networks, 32(3), 245–251.
Article
Google Scholar
Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press.
Pötscher, B.M., & Leeb, H. (2009). On the distribution of penalized maximum likelihood estimators: the lasso, scad, and thresholding. Journal of Multivariate Analysis, 100(9), 2065–2082.
Article
Google Scholar
R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.Rproject.org/.
Rosseel, Y. (2012). lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48 (2), 1–36.
Article
Google Scholar
Sporns, O., Chialvo, D.R., Kaiser, M., & Hilgetag, C.C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418–425.
Article
PubMed
Google Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58, 267–288.
Google Scholar
van Borkulo, C.D., Borsboom, D., Epskamp, S., Blanken, T.F., Boschloo, L., Schoevers, R.A., & Waldorp, L.J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(5918), 1–10.
van Borkulo, C.D., Boschloo, L., Borsboom, D., Penninx, B.W.J.H., Waldorp, L.J., & Schoevers, R.A. (2015). Association of Symptom Network Structure With the Course of Depression. JAMA Psychiatry, 72 (12), 1219–1226.
Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.
Article
Google Scholar
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.
Book
Google Scholar
Watts, D., & Strogatz, S. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440–442.
Article
PubMed
Google Scholar
Zhao, T., Li, X., Liu, H., Roeder, K., Lafferty, J., & Wasserman, L. (2015). Huge: high-dimensional undirected graph estimation. R package version 1.2.7. Retrieved from https://CRAN.R-project.org/package=huge.