Skip to main content
Log in

Tachistoscopic illumination and masking of real scenes

  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

Tachistoscopic presentation of scenes has been valuable for studying the emerging properties of visual scene representations. The spatial aspects of this work have generally been focused on the conceptual locations (e.g., next to the refrigerator) and directional locations of objects in 2-D arrays and/or images. Less is known about how the perceived egocentric distance of objects develops. Here we describe a novel system for presenting brief glimpses of a real-world environment, followed by a mask. The system includes projectors with mechanical shutters for projecting the fixation and masking images, a set of LED floodlights for illuminating the environment, and computer-controlled electronics to set the timing and initiate the process. Because a real environment is used, most visual distance and depth cues can be manipulated using traditional methods. The system is inexpensive, robust, and its components are readily available in the marketplace. This article describes the system and the timing characteristics of each component. We verified the system’s ability to control exposure to time scales as low as a few milliseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It should be noted that the inclusion of a fixation point would lead the observer to fixate on a virtual location that depends on the distance from the beamsplitter to the projection screen. With or without a fixation point, the oculomotor posture of the eyes may not be informative about target distance when viewing time is limited. However, monocular and binocular forms of parallax—the cues that elicit accommodation and convergence—remain available and potentially useful sources of information about target distance (Foley, 1978).

  2. Another consideration is that many solid-state relays designed for alternating current wait for a “zero crossing” to actuate, resulting in an unpredictable delay of up to 8 ms. This can be avoided by careful selection of the components.

  3. Standard capacitors are (depending on their construction) generally only guaranteed to be within 10 % or 20 % of their nominal capacitance. Thus, a nominal 100-μF capacitor may range anywhere from 80 to 120 μF. The actual value must be determined though testing. However, the capacitance, once determined, is constant. The minimum nominal delay as the circuit is configured is theoretically 150 μs. To limit the current drawn by the delay circuit, an artificial lower limit of about 4 ms is enforced in software.

  4. Because the photodiode saturates in the experimental configuration, we take the LED lamps to be fully illuminated when the photodiode output is at its saturation value. If we compare the rise and fall curves of the LED response in Figs. 2 and 3, it is clear that the LED has reached at least 75 % of full illumination at saturation.

References

  • Adam, J. J., Davelaar, E. J., van der Gouw, A., & Willems, P. (2008). Evidence for attentional processing in spatial localization. Psychological Research, 72, 433–442. doi:10.1007/s00426-007-0126-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Becker, M. W., & Rasmussen, I. P. (2008). Guidance of attention to objects and locations by long-term memory of natural scenes. Journal of Experimental Psychology: Human Learning and Memory, 34, 1325–1338.

    Google Scholar 

  • Breitmeyer, B. G. (1984). Visual masking: An integrative approach. New York, NY: Oxford University Press.

    Google Scholar 

  • Breitmeyer, B. G., & Öğmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update. Perception & Psychophysics, 62, 1572–1595.

    Article  Google Scholar 

  • Breitmeyer, B. G., & Öğmen, H. (2006). Visual masking: Time slices through conscious and unconscious vision (2nd ed.). New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34, 191–204.

    Article  PubMed  Google Scholar 

  • Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12, 1127–1133.

    Article  Google Scholar 

  • Fischmeister, F. P., Leodolter, U., Windischberger, C., Kasess, C. H., Schöpf, V., & Bauer, H. (2010). Multiple serial picture presentation with millisecond resolution using a three-way LC-shutter-tachistoscope. Journal of Neuroscience Methods, 187, 235–242.

    Article  PubMed  Google Scholar 

  • Foley, J. M. (1978). Primary distance perception. In R. Held, H. W. Leibowitz, & H.-L. Teuber (Eds.), Handbook of sensory physiology (Perception, Vol. VIII, pp. 181–213). Berlin, Germany: Springer.

    Google Scholar 

  • Gajewski, D. A., Philbeck, J. W., Pothier, S., & Chichka, D. (2010). From the most fleeting of glimpses: On the time course for the extraction of distance information. Psychological Science, 21, 1446–1453. doi:10.1177/0956797610381508

    Article  PubMed Central  PubMed  Google Scholar 

  • Gajewski, D. A., Philbeck, J. W., Wirtz, P. W., & Chichka, D. (2014). Angular declination and the dynamic perception of egocentric distance. Journal of Experimental Psychology: Human Perception and Performance, 40(1):361–377. doi:10.1037/a0034394

    Google Scholar 

  • Gegenfurtner, K. R., & Sperling, G. (1993). Information transfer in iconic memory experiments. Journal of Experimental Psychology: Human Perception and Performance, 19, 845–866. doi:10.1037/0096-1523.19.4.845

    PubMed  Google Scholar 

  • Greene, M. R., & Oliva, A. (2009). The briefest of glances: The time course of natural scene understanding. Psychological Science, 40, 464–472. doi:10.1111/j.1467-9280.2009.02316.x

    Article  Google Scholar 

  • Hollingworth, A. (2005). Memory for object position in natural scenes. Visual Cognition, 12, 1003–1016.

    Article  Google Scholar 

  • Huebner, G. M., & Gegenfurtner, K. R. (2010). Effects of viewing time, fixations, and viewing strategies on visual memory for briefly presented natural objects. Quarterly Journal of Experimental Psychology, 63, 1398–1413. doi:10.1080/17470210903398139

    Article  Google Scholar 

  • Irwin, D. E., & Yeomans, J. M. (1986). Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception and Performance, 12, 343–360. doi:10.1037/0096-1523.12.3.343

    PubMed  Google Scholar 

  • Irwin, D. E., & Zelinsky, G. J. (2002). Eye movements and scene perception: Memory for things observed. Perception & Psychophysics, 64, 882–895.

    Article  Google Scholar 

  • Loomis, J. M., da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906–921. doi:10.1037/0096-1523.18.4.906

    PubMed  Google Scholar 

  • Microchip Technology Inc. (2003). Single/dual digital potentiometer with SPI interface (Microchip data sheet DS1195C). Chandler, AZ: Author.

  • Pothier, S., Philbeck, J., Chichka, D., & Gajewski, D. A. (2009). Tachistoscopic exposure and masking of real three-dimensional scenes. Behavior Research Methods, 41, 107–112. doi:10.3758/BRM.41.1.107

    Article  PubMed Central  PubMed  Google Scholar 

  • Rieser, J. J., Ashmead, D. H., Talor, C. R., & Younquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675–689.

    Article  PubMed  Google Scholar 

  • SHARP Corporation. (1999). Photodiode/phototransistor application circuit (Sharp Application Note SMA99017). Camas, WA: Author.

  • Sperdin, H. F., Repnow, M., Herzog, M. H., & Landis, T. (2013). An LCD tachistoscope with submillisecond precision. Behavior Research Methods, 45, 1347–1357. doi:10.3758/s13428-012-0311-0

    Article  PubMed  Google Scholar 

  • Thomson, J. A. (1980). How do we use visual information to control locomotion? Trends in Neurosciences, 3, 247–250.

    Article  Google Scholar 

  • Thurgood, C., Patterson, J., Simpson, D., & Whitfield, T. W. A. (2010). Development of a light-emitting diode tachistoscope. Review of Scientific Instruments, 81, 035117.

    Article  PubMed  Google Scholar 

  • Võ, M. L.–H., & Henderson, J. M. (2010). The time course of initial scene processing for eye movement guidance in natural scene search. Journal of Vision, 10(3):14, 1–13. doi:10.1167/10.3.14

    Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92–114. doi:10.1037/0096-1523.27.1.92

    PubMed  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32, 1436–1451. doi:10.1037/0096-1523.32.6.1436

    PubMed  Google Scholar 

  • Wu, B., Ooi, T. L., & He, Z. J. (2004). Perceiving distance accurately by a directional process of integrating ground information. Nature, 428, 73–77. doi:10.1038/nature02350

    Article  PubMed  Google Scholar 

Download references

Author Note

This research was supported by NIH Grant No. R01EY021771 to J.W.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Gajewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chichka, D., Philbeck, J.W. & Gajewski, D.A. Tachistoscopic illumination and masking of real scenes. Behav Res 47, 45–52 (2015). https://doi.org/10.3758/s13428-014-0449-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13428-014-0449-z

Keywords

Navigation