Bayesian data analysis for newcomers

Brief Report


This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.


Bayesian model Bayesian analysis Null hypothesis significance test Bayes factor Highest density interval Region of practical equivalence p value Confidence interval Replication crisis 


  1. Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational and Behavioral Statistics, 17(3), 251–269.CrossRefGoogle Scholar
  2. Andraszewicz, S., Scheibehenne, B., Rieskamp, J., Grasman, R., Verhagen, J., & Wagenmakers, E. J. (2014). An introduction to Bayesian hypothesis testing for management research. Journal of Management, 1–23.Google Scholar
  3. Arminger, G., & Muthén, B. O. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika, 63(3), 271–300.CrossRefGoogle Scholar
  4. Azevedo, C. L., Andrade, D. F., & Fox, J. P. (2012). A Bayesian generalized multiple group IRT model with model-fit assessment tools. Computational Statistics & Data Analysis, 56(12), 4399–4412.CrossRefGoogle Scholar
  5. Bayes, T., & Price, R. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F.R.S. Communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S. Philosophical Transactions, 53, 370–418. doi: 10.1098/rstl.1763.0053 CrossRefGoogle Scholar
  6. Bolstad, W. M. (2009). Understanding computational Bayesian statistics. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  7. Bolstad, W. M. (2016). Introduction to Bayesian statistics, 3rd edn. Hoboken, NJ: Wiley.Google Scholar
  8. Chater, N., & Oaksford, M. (2008). The probabilistic mind: Prospects for a Bayesian cognitive science. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  9. Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Special issue: Probabilistic models of cognition. Trends in CognitiveSciences, 10(7), 287–344.CrossRefGoogle Scholar
  10. Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd edn. Hillsdale, NJ: Erlbaum.Google Scholar
  11. Cox, D. R. (2006). Principles of statistical inference. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  12. Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. Routledge.Google Scholar
  13. Cumming, G. (2014). The new statistics why and how. Psychological Science, 25(1), 7–29.PubMedCrossRefGoogle Scholar
  14. Dale, A. I. (1999). A history of inverse probability: From Thomas Bayes to Karl Pearson, 2nd edn. Springer.Google Scholar
  15. de Vries, R. M., Hartogs, B. M., & Morey, R. D. (2014). A tutorial on computing Bayes factors for single-subject designs. Behavior Therapy.Google Scholar
  16. Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6(3), 274–290.PubMedCrossRefGoogle Scholar
  17. Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 78–89. doi: 10.1016/ Scholar
  19. Doyle, A. C. (1890). The sign of four. London: Spencer Blackett.Google Scholar
  20. Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193–242.CrossRefGoogle Scholar
  21. Fisher, R. A. (1925). Statistical methods for research workers. Oliver and Boyd.Google Scholar
  22. Fox, J. P., van den Berg, S., & Veldkamp, B. (2015). Bayesian psychometric scaling. In P. Irwing , T. Booth, & D. Hughes (Eds.), Handbook of psychometric testing. Wiley-Blackwell.Google Scholar
  23. Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology: General, 141(1), 2–18.CrossRefGoogle Scholar
  24. Gallistel, C. R. (2009). The importance of proving the null. Psychological Review, 116(2), 439–453.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gelfand, A. E. (2000). Gibbs sampling. Journal of the American Statistical Association, 95(452), 1300–1304.CrossRefGoogle Scholar
  26. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis, 3rd edn. Boca Raton, Florida: CRC Press.Google Scholar
  27. Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry about multiple comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211.CrossRefGoogle Scholar
  28. Geweke, J., & Whiteman, C. (2006). Bayesian forecasting. Handbook of Economic Forecasting, 1, 3–80.CrossRefGoogle Scholar
  29. Ghosh, J., & Dunson, D. B. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18(2), 306–320.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606.CrossRefGoogle Scholar
  31. Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: What you always wanted to know about significance testing but were afraid to ask. In D. Kaplan (Ed.), The sage handbook of quantitative methodology for the social sciences (pp. 391–408). Thousand Oaks, CA: Sage.Google Scholar
  32. Gigerenzer, G., & Marewski, J. N. (2015). Surrogate science: The idol of a universal method for scientific inference. Journal of Management, 41(2), 421–440.CrossRefGoogle Scholar
  33. Gilet, E., Diard, J., & Bessière, P. (2011). Bayesian action–perception computational model: interaction of production and recognition of cursive letters. PloS one, 6(6), e20387.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gill, J. (2014). Bayesian methods: Asocial and behavioral sciences approach, 3rd edn. Boca Raton, Florida: CRC Press.Google Scholar
  35. Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), The Cambridge handbook of computational psychology (pp. 59–100). Cambridge, UK: Cambridge University Press.Google Scholar
  36. Guan, M., & Vandekerckhove, J. (2016). A Bayesian approach to mitigation of publication bias. Psychonomic Bulletin & Review, 23, 74–86.CrossRefGoogle Scholar
  37. Guglielmi, A., Ieva, F., Paganoni, A. M., Ruggeri, F., & Soriano, J. (2014). Semiparametric Bayesian models for clustering and classification in the presence of unbalanced in-hospital survival. Journal of the Royal Statistical Society: Series C (Applied Statistics), 63(1), 25–46.CrossRefGoogle Scholar
  38. Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students share with their teachers. Methods of Psychological Research, 7(1), 1–20.Google Scholar
  39. Jackman, S. (2009). Bayesian analysis for the social sciences. New York: Wiley.CrossRefGoogle Scholar
  40. Jacobs, R. A., & Kruschke, J. K. (2010). Bayesian learning theory applied to human cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 8–21.PubMedGoogle Scholar
  41. Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving, 7(1). doi: 10.7771/1932-6246.1167.
  42. Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.Google Scholar
  43. John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 23, 524–532.PubMedCrossRefGoogle Scholar
  44. Kary, A., Taylor, R., & Donkin, C. (2016). Using Bayes factors to test the predictions of models: A case study in visual working memory. Journal of Mathematical Psychology, 72, 210–219. doi: 10.1016/ Scholar
  45. Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.CrossRefGoogle Scholar
  46. Kelley, K. (2013). Effect size and sample size planning. In T. D. Little (Ed.), Oxford handbook of quantitative methods, Foundations, (Vol. 1, pp. 206–222). New York: Oxford University Press.Google Scholar
  47. Kievit, R. A. (2011). Bayesians caught smuggling priors into Rotterdam harbor. Perspectives on Psychological Science, 6(3), 313–313.PubMedCrossRefGoogle Scholar
  48. Kording, K. P. (2014). Bayesian statistics: Relevant for the brain? Current Opinion in Neurobiology, 25, 130–133.PubMedCrossRefGoogle Scholar
  49. Kruschke, J. K. (2008). Bayesian approaches to associative learning: From passive to active learning. Learning & Behavior, 36(3), 210–226.CrossRefGoogle Scholar
  50. Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences, 14(7), 293–300. doi: 10.1016/j.tics.2010.05.001.PubMedCrossRefGoogle Scholar
  51. Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6(3), 299–312.PubMedCrossRefGoogle Scholar
  52. Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573–603. doi: 10.1037/a0029146.CrossRefGoogle Scholar
  53. Kruschke, J. K. (2015). Doing Bayesian data analysis, Second Edition: A tutorial with R, JAGS, and Stan. Burlington, MA: Academic Press/Elsevier.Google Scholar
  54. Kruschke, J. K., Aguinis, H., & Joo, H. (2012). The time has come: Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15, 722–752. doi: 10.1177/1094428112457829.CrossRefGoogle Scholar
  55. Kruschke, J. K., & Liddell, T. M. (2017). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review,  10.3758/s13423-016-1221-4
  56. Kruschke, J. K., & Vanpaemel, W. (2015). Bayesian estimation in hierarchical models. In J. R. Busemeyer, J. T. Townsend, Z. J. Wang, & A. Eidels (Eds.), Oxford handbook of computational and mathematical psychology. Oxford University Press.Google Scholar
  57. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 963.CrossRefGoogle Scholar
  58. Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social Psychological and Personality Science, Retrieved from
  59. Lau, J. W., & Green, P. J. (2007). Bayesian model-based clustering procedures. Journal of Computational and Graphical Statistics, 16(3), 526–558.CrossRefGoogle Scholar
  60. Ledgerwood, A. (2014). Introduction to the special section on advancing our methods and practices. Perspective on Psychological Science, 9(3), 275–277.CrossRefGoogle Scholar
  61. Lee, J., & Corter, J. E. (2011). Diagnosis of subtraction bugs using Bayesian networks. Applied Psychological Measurement, 35(1), 27–47.CrossRefGoogle Scholar
  62. Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. Cambridge, England: Cambridge University Press.Google Scholar
  63. Lesaffre, E. (2008). Superiority, equivalence, and non-inferiority trials. Bulletin of the NYU Hospital for Joint Diseases, 66(2), 150–154.PubMedGoogle Scholar
  64. Liddell, T. M., & Kruschke, J. K. (2014). Ostracism and fines in a public goods game with accidental contributions: The importance of punishment type. Judgment and Decision Making, 9(6), 523–547.Google Scholar
  65. Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal of Mathematical Psychology, 52, 362–375.CrossRefGoogle Scholar
  66. Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2013). The BUGS book: A practical introduction to Bayesian analysis. Boca Raton, Florida: CRC Press.Google Scholar
  67. Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690.PubMedCrossRefGoogle Scholar
  68. Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective, 2nd edn. Mahwah, NJ: Erlbaum.Google Scholar
  69. Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. Annual Review of Psychology, 59, 537–563.PubMedCrossRefGoogle Scholar
  70. Mayo, D. G., & Spanos, A. (2011). Error statistics. In P. S. Bandyopadhyay, & M. R. Forster (Eds.) Handbook of the philosophy of science. Philosophy of statistics (Vol. 7, pp. 153–198). Elsevier.Google Scholar
  71. McCulloch, R. E., & Tsay, R. S. (1994). Bayesian analysis of autoregressive time series via the Gibbs sampler. Journal of Time Series Analysis, 15(2), 235–250.CrossRefGoogle Scholar
  72. McElreath, R. (2016). Statistical rethinking: Statistical rethinking: A Bayesian course with examples in R and Stan. Boca Raton, FL: CRC Press.Google Scholar
  73. McGrayne, S. B. (2011). The theory that would not die. Yale University Press.Google Scholar
  74. McKee, R. A., & Miller, C. C. (2015). Institutionalizing Bayesianism within the organizational sciences: A practical guide featuring comments from eminent scholars. Journal of Management, 41(2), 471–490.CrossRefGoogle Scholar
  75. Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34, 103–115.CrossRefGoogle Scholar
  76. Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests (pp. 395–425). Mahwah, NJ: Erlbaum.Google Scholar
  77. Merkle, E. C., & Rosseel, Y. (2016). blavaan: Bayesian structural equation models via parameter expansion. arXiv:1511.05604
  78. Mezzetti, M. (2012). Bayesian factor analysis for spatially correlated data: Application to cancer incidence data in Scotland. Statistical Methods & Applications, 21(1), 49–74.CrossRefGoogle Scholar
  79. Morey, R. D., Hoekstra, R., Rouder, J. N., & Wagenmakers, E. J. (2015). Continued misinterpretation of confidence intervals: Response to Miller and Ulrich. Psychonomic Bulletin & Review, 1–10. doi: 10.3758/s13423-015-0955-8.
  80. Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16(4), 406–419.PubMedCrossRefGoogle Scholar
  81. Mosteller, F., & Wallace, D. L. (1984). Applied Bayesian and classical inference the case of the Federalist papers. New York: Springer.CrossRefGoogle Scholar
  82. Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin and Review, 4, 79–95.CrossRefGoogle Scholar
  83. Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology, 115, 39–57.PubMedCrossRefGoogle Scholar
  84. Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  85. Oravecz, Z., Vandekerckhove, J., & Batchelder, W. H. (2014). Bayesian cultural consensus theory. Field Methods, 26(3), 207–222.CrossRefGoogle Scholar
  86. Osborne, J. W., & Overbay, A. (2004). The power of outliers (and why researchers should always check for them). Practical Assessment, Research & Evaluation, 9(6). Retrieved from
  87. Pashler, H., & Wagenmakers, E. (2012). Editors’ introduction to the special section on replicability in psychological science: A crisis of confidence? Perspectives on Psychological Science, 7(6), 528–530.PubMedCrossRefGoogle Scholar
  88. Peng, F., Schuurmans, D., & Wang, S. (2004). Augmenting naive Bayes classifiers with statistical language models. Information Retrieval, 7(3-4), 317–345.CrossRefGoogle Scholar
  89. Perfors, A., Tenenbaum, J. B., Griffiths, T. L., & Xu, F. (2011). A tutorial introduction to Bayesian models of cognitive development. Cognition, 120(3), 302–321.PubMedCrossRefGoogle Scholar
  90. Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In, Proceedings of the 3rd international workshop on distributed statistical computing DSC. (Vienna, Austria. ISSN 1609-395X).Google Scholar
  91. Pole, A., West, M., & Harrison, J. (1994). Applied Bayesian forecasting and time series analysis. CRC Press.Google Scholar
  92. Richardson, S., & Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(4), 731–792.CrossRefGoogle Scholar
  93. Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113(3), 553–565.PubMedCrossRefGoogle Scholar
  94. Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21(2), 301–308.CrossRefGoogle Scholar
  95. Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12(4), 573–604.CrossRefGoogle Scholar
  96. Rouder, J. N., & Morey, R. D. (2012). Default Bayes factors for model selection in regression. Multivariate Behavioral Research, 47(6), 877–903.PubMedCrossRefGoogle Scholar
  97. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374.CrossRefGoogle Scholar
  98. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237.CrossRefGoogle Scholar
  99. Sagarin, B. J., Ambler, J. K., & Lee, E. M. (2014). An ethical approach to peeking at data. Perspectives on Psychological Science, 9(3), 293–304.PubMedCrossRefGoogle Scholar
  100. Sanborn, A. N., & Hills, T. T. (2014). The frequentist implications of optional stopping on Bayesian hypothesis tests. Psychonomic Bulletin & Review, 21(2), 283–300.CrossRefGoogle Scholar
  101. Santos, J. R., Azevedo, C. L., & Bolfarine, H. (2013). A multiple group item response theory model with centered skew-normal latent trait distributions under a Bayesian framework. Journal of Applied Statistics, 40(10), 2129–2149.CrossRefGoogle Scholar
  102. Schönbrodt, F. D., Wagenmakers, E. J., Zehetleitner, M., & Perugini, M. (2016). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods.Google Scholar
  103. Serlin, R. C., & Lapsley, D. K. (1985). Rationality in psychological research: The good-enough principle. American Psychologist, 40(1), 73–83.CrossRefGoogle Scholar
  104. Serlin, R. C., & Lapsley, D. K. (1993). Rational appraisal of psychological research and the good-enough principle. In G. Keren , & C. Lewis (Eds.), (pp. 199–228). Hillsdale, NJ: Erlbaum.Google Scholar
  105. Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E. J. (2008). A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science, 32(8), 1248–1284.PubMedCrossRefGoogle Scholar
  106. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366.PubMedCrossRefGoogle Scholar
  107. Sinharay, S., & Stern, H. S. (2002). On the sensitivity of Bayes factors to the prior distributions. The American Statistician, 56(3), 196–201.CrossRefGoogle Scholar
  108. Song, X. Y., & Lee, S. Y. (2001). Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations. British Journal of Mathematical and Statistical Psychology, 54(2), 237–263.PubMedCrossRefGoogle Scholar
  109. Song, X. Y., & Lee, S. Y. (2012). A tutorial on the Bayesian approach for analyzing structural equation models. Journal of Mathematical Psychology, 56(3), 135–148.CrossRefGoogle Scholar
  110. Stan Development Team (2016). Stan modeling language users guide and reference manual, version 2.14.0. Retrieved from
  111. Vandekerckhove, J. (2014). A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. Journal of Mathematical Psychology, 60, 58–71.CrossRefGoogle Scholar
  112. Vanpaemel, W. (2009). BayesGCM: Software for Bayesian inference with the generalized context model. Behavior Research Methods, 41(4), 1111–1120.PubMedCrossRefGoogle Scholar
  113. Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal of Mathematical Psychology, 54, 491–498.CrossRefGoogle Scholar
  114. Vanpaemel, W. (2011). Constructing informative model priors using hierarchical methods. Journal of Mathematical Psychology, 55(1), 106–117.CrossRefGoogle Scholar
  115. Vanpaemel, W., & Lee, M. D. (2012). Using priors to formalize theory: Optimal attention and the generalized context model. Psychonomic Bulletin & Review, 19, 1047–1056.CrossRefGoogle Scholar
  116. Verhagen, J., & Wagenmakers, E. J. (2014). Bayesian tests to quantify the result of a replication attempt. Journal of Experimental Psychology: General, 143(4), 1457–1475.CrossRefGoogle Scholar
  117. Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.CrossRefGoogle Scholar
  118. Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p values: Context, process, and purpose. The American Statistician, 70(2), 129–133. doi: 10.1080/00031305.2016.1154108.CrossRefGoogle Scholar
  119. Westlake, W. J. (1976). Symmetrical confidence intervals for bioequivalence trials. Biometrics, 32, 741–744.PubMedCrossRefGoogle Scholar
  120. Westlake, W. J. (1981). Response to bioequivalence testing—a need to rethink. Biometrics, 37, 591–593.Google Scholar
  121. Wetzels, R., Matzke, D., Lee, M. D., Rouder, J., Iverson, G., & Wagenmakers, E. J. (2011). Statistical evidence in experimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291–298.PubMedCrossRefGoogle Scholar
  122. Wiens, B. L. (2002). Choosing an equivalence limit for noninferiority or equivalence studies. Controlled Clinical Trials, 23, 2–14.PubMedCrossRefGoogle Scholar
  123. Wilkinson, L. (1999). The task force on statistical inference statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594–604.CrossRefGoogle Scholar
  124. Yu, E. C., Sprenger, A. M., Thomas, R. P., & Dougherty, M. R. (2014). When decision heuristics and science collide. Psychonomic Bulletin & Review, 21(2), 268–282.CrossRefGoogle Scholar
  125. Zyphur, M. J., & Oswald, F. L. (2015). Bayesian estimation and inference: a user’s guide. Journal of Management, 41(2), 390–420.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations