Psychonomic Bulletin & Review

, Volume 24, Issue 1, pp 140–141 | Cite as

The continuing legacy of nature versus nurture in biolinguistics

  • Daniel L. Bowling
Open Access
Brief Report


Theories of language evolution that separate biological and cultural contributions perpetuate a false dichotomy between nature and nurture. The explanatory power of future theories will depend on acknowledging the reality of gene–culture interaction and how it makes language possible.


Language Genetics Development Nature vs. Nurture 

Kirby’s theory puts culture at the heart of language evolution. His thesis is that linguistic structure is best explained as a result of cultural transmission rather than natural selection (Kirby, 2016). He does not exclude biological constraints completely, however, arguing that human predispositions to share our inner thoughts with each other and learn new signals were both critical in setting the stage for the emergence of linguistic structure through culture. On the surface then, Kirby’s account appears to integrate culture with biology, reflecting the modern consensus that explanations cast in terms of nature versus nurture pose a false dichotomy (Bateson, 2002; Gopnik, 2014; Ridley, 2003).

There is an important sense, however, in which Kirby’s theory fails to leave the nature–nurture dichotomy behind. His identification of constraints as either cultural or biological assumes fundamentally that they are separate causal forces. This is a problem, not only because culture is itself a biological phenomenon, but because interactions between DNA and the environment are bidirectional and ubiquitous (Fisher, 2006; Goldberg, Allis, & Bernstein, 2007; Kanherkar, Bhatia-Dey, & Csoka, 2014). This is particularly relevant for linguistic structure, which probably requires extensive interactions between genome and the environment to properly develop (Johnson & Newport, 1989; Werker & Hensch, 2014).

Although many details remain obscure, classic examples of experience-dependent development in other domains like vision strongly suggest that during the cascade of critical and sensitive periods that characterize language learning (Werker & Hensch, 2014), exposure to the right language input at the right times is required for the local expression of certain genes, whose products (e.g., transcription factors, proteolytic enzymes, and neurotrophic factors) and their interactions are in turn required for subsequent input to effect the appropriate neural modifications (Borrelli, Nestler, Allis, & Sassone-Corsi, 2008; Hensch, 2004, 2005; Werker & Hensch, 2014). Given that specific gene-culture interactions are likely to be critical for language development, models that pin high-level linguistic features like structure primarily on culture or biology are unlikely to explain the origins of language.

In historical context, however, Kirby’s emphasis on culture serves as an important counterweight to the widespread view that linguistic structure must be explained by specific causal modifications to the genome (Bolhuis, Tattersall, Chomsky, & Berwick, 2014; Klein & Edgar, 2002; Pinker & Bloom, 1990), a theory that is even more subject to criticism for failing to recognize gene-culture interactions (Fisher & Ridley, 2013; Laland, Odling-Smee, & Myles, 2010). From this perspective, Kirby et al.’s demonstration that cultural transmission, modeled using iterated learning in the presence of an informational bottleneck, can turn a holistic system into a compositional one expands the set of explanatory tools we can use to think about language evolution, and provides a warning against abstract (and probably false) assumptions about the genetic foundations of language. To paraphrase one geneticist’s thoughts on the topic: genes do not encode specific behaviors, cognitive processes, or even neural circuits, they make proteins that interact in complex, environmentally modulated networks, to build and maintain brains (Fisher, 2006, 2016). A final positive point is that even though Kirby’s Bayesian models falsely separate genes from learning, the inclusion and formalization of both is a clear step forward.

In sum, modern theories of language evolution that combine cultural and biological constraints still have work to do before they can leave the nature–nurture dichotomy fully behind. It seems likely that the explanatory power of future theories will ultimately depend on coming to grips with the molecular and neural details of gene–culture interactions and how they make language possible.



Open access funding provided by Austrian Science Fund (FWF).


  1. Bateson, P. (2002). The corpse of a wearisome debate. Science, 297, 64–65.Google Scholar
  2. Bolhuis, J. J., Tattersall, I., Chomsky, N., & Berwick, R. C. (2014). How could language have evolved? PLoS Biology, 12(8), 1–6. doi: 10.1371/journal.pbio.1001934
  3. Borrelli, E., Nestler, E. J., Allis, C. D., & Sassone-Corsi, P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6), 961–974. doi: 10.1016/j.neuron.2008.10.012
  4. Fisher, S. E. (2006). Tangled webs: Tracing the connections between genes and cognition. Cognition, 101(2), 270–297. doi: 10.1016/j.cognition.2006.04.004
  5. Fisher, S. E. (2016). Evolution of language: Lessons from the genome. Psychonomic Bulletin & Review, 1–7. doi:  10.3758/s13423-016-1112-8
  6. Fisher, S. E., & Ridley, M. (2013). Culture, genes, and the human revolution. Science, 340(6135), 929–930. doi: 10.1126/science.1236171
  7. Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A landscape takes shape. Cell, 128(4), 635–638. doi: 10.1016/j.cell.2007.02.006
  8. Gopnik, A. (2014). Time to retire the simplicity of nature vs. nurture. The Wall Street Journal. Retrieved from
  9. Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27(1), 549–579. doi: 10.1146/annurev.neuro.27.070203.144327
  10. Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews. Neuroscience, 6(11), 877–888. doi: 10.1038/nrn1787
  11. Johnson, J. J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21(1), 60–99. doi: 10.1016/0010-0285(89)90003-0
  12. Kanherkar, R. R., Bhatia-Dey, N., & Csoka, A. B. (2014). Epigenetics across the human lifespan. Frontiers in Cell and Developmental Biology, 2, 49. doi: 10.3389/fcell.2014.00049
  13. Kirby, S. (2016). Culture and biology in the origins of linguistic structure. Psychonomic Bulletin & Review.Google Scholar
  14. Klein, R. G., & Edgar, B. (2002). The dawn of human culture. New York: Wiley.Google Scholar
  15. Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences together. Nature Reviews Genetics, 11(2), 137–148. doi: 10.1038/nrg2734
  16. Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13(4), 707–784.Google Scholar
  17. Ridley, M. (2003). Nature via nurture: Genes, experience, and what makes us human. New York: Harper Collins.Google Scholar
  18. Werker, J. F., & Hensch, T. K. (2014). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173–196. doi: 10.1146/annurev-psych-010814-015104

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Cognitive BiologyUniversity of ViennaViennaAustria

Personalised recommendations