Advertisement

Psychonomic Bulletin & Review

, Volume 22, Issue 1, pp 156–162 | Cite as

Time-based forgetting in visual working memory reflects temporal distinctiveness, not decay

  • Alessandra S. SouzaEmail author
  • Klaus Oberauer
Brief Report

Abstract

Is forgetting from working memory (WM) better explained by decay or interference? The answer to this question is the topic of an ongoing debate. Recently, a number of studies showed that performance in tests of visual WM declines with an increasing unfilled retention interval. This finding was interpreted as revealing decay. Alternatively, it can be explained by interference theories as an effect of temporal distinctiveness. According to decay theories, forgetting depends on the absolute time elapsed since the event to be retrieved. In contrast, temporal distinctiveness theories predict that memory depends on relative time, that is, the time since the to-be-retrieved event relative to the time since other, potentially interfering events. In the present study, we contrasted the effects of absolute time and relative time on forgetting from visual WM, using a continuous color recall task. To this end, we varied the retention interval and the inter-trial interval. The error in reporting the target color was a function of the ratio of the retention interval to the inter-trial interval, as predicted by temporal distinctiveness theories. Mixture modeling revealed that lower temporal distinctiveness produced a lower probability of reporting the target, but no changes in its precision in memory. These data challenge the role of decay in accounting for performance in tests of visual WM, and show that the relative spacing of events in time determines the degree of interference.

Keywords

Visual working memory Forgetting Decay Temporal distinctiveness 

Notes

Author Notes

This research was supported by grants from the Forschungskredit from the University of Zurich (project FK-13-083) to Alessandra S. Souza, and from the Swiss National Science Foundation (project 100014_149193) to Klaus Oberauer. We thank Stefanie Colaço for collecting the data.

References

  1. Barrouillet, P., & Camos, V. (2012). As time goes by temporal constraints in working memory. Current Directions in Psychological Science, 21, 413–419. doi: 10.1177/0963721412459513 CrossRefGoogle Scholar
  2. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9, 1–11. doi: 10.1167/9.10.7 PubMedCrossRefGoogle Scholar
  3. Berman, M. G., Jonides, J., & Lewis, R. L. (2009). In search of decay in verbal short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 317–333. doi: 10.1037/a0014873 PubMedCentralPubMedGoogle Scholar
  4. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357 PubMedCrossRefGoogle Scholar
  5. Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114, 539–576. doi: 10.1037/0033-295X.114.3.539 PubMedCrossRefGoogle Scholar
  6. Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55, 627–652. doi: 10.1016/j.jml.2006.08.005 CrossRefGoogle Scholar
  7. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.PubMedCrossRefGoogle Scholar
  8. Jalbert, A., Neath, I., Bireta, T. J., & Surprenant, A. M. (2011). When does length cause the word length effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 338–353. doi: 10.1037/a0021804 PubMedGoogle Scholar
  9. Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. Psychology of Learning and Motivation, 49, 1–48.CrossRefGoogle Scholar
  10. Lewandowsky, S., Geiger, S. M., Morrell, D. B., & Oberauer, K. (2010). Turning simple span into complex span: Time for decay or interference from distractors? Journal of Experimental Psychology: Learning, Memory and Cognition, 36, 958–978.Google Scholar
  11. Morey, C. C., & Bieler, M. (2013). Visual short-term memory always requires general attention. Psychonomic Bulletin & Review, 20, 163–170. doi: 10.3758/s13423-012-0313-z CrossRefGoogle Scholar
  12. Morey, R. D., & Rouder, J. N. (2013). BayesFactor (Version 0.9.5). Retrieved from http://bayesfactorpcl.r-forge.r-project.org/
  13. Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251–269. doi: 10.3758/BF03213879
  14. Nairne, J. S. (2002). Remembering over the short-term: The case against the standard model. Annual Review of Psychology, 53, 53–81. doi: 10.1146/annurev.psych.53.100901.135131 PubMedCrossRefGoogle Scholar
  15. Oberauer, K., & Lewandowsky, S. (2008). Forgetting in immediate serial recall: Decay, temporal distinctiveness, or interference? Psychological Review, 115, 544–576. doi: 10.1037/0033-295X.115.3.544 PubMedCrossRefGoogle Scholar
  16. Oberauer, K., & Lewandowsky, S. (2013). Evidence against decay in verbal working memory. Journal of Experimental Psychology: General, 142, 380–411. doi: 10.1037/a0029588 CrossRefGoogle Scholar
  17. Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: an interference model of complex span. Psychonomic Bulletin & Review, 19, 779–819. doi: 10.3758/s13423-012-0272-4 CrossRefGoogle Scholar
  18. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366 PubMedCrossRefGoogle Scholar
  19. Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retrospective attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39, 1224–1231. doi: 10.1037/a0030947 PubMedCentralPubMedGoogle Scholar
  20. Prinzmetal, W., Amiri, H., Allen, K., & Edwards, T. (1998). Phenomenology of attention: I. Color, location, orientation, and spatial frequency. Journal of Experimental Psychology: Human Perception and Performance, 24, 261–282. doi: 10.1037/0096-1523.24.1.261 Google Scholar
  21. Ricker, T. J., & Cowan, N. (2010). Loss of visual working memory within seconds: The combined use of refreshable and non-refreshable features. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1355–1368. doi: 10.1037/a0020356 PubMedCentralPubMedGoogle Scholar
  22. Ricker, T. J., & Cowan, N. (2014). Differences between presentation methods in working memory procedures: A matter of working memory consolidation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 417–428. doi: 10.1037/a0034301 PubMedGoogle Scholar
  23. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374. doi: 10.1016/j.jmp.2012.08.001 CrossRefGoogle Scholar
  24. Shipstead, Z., & Engle, R. W. (2013). Interference within the focus of attention: Working memory tasks reflect more than temporary maintenance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 277–289. doi: 10.1037/a0028467 PubMedGoogle Scholar
  25. White, K. G. (2012). Dissociation of short-term forgetting from the passage of time. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 255–259. doi: 10.1037/a0025197 PubMedGoogle Scholar
  26. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120–1135. doi: 10.1167/4.12.11 PubMedCrossRefGoogle Scholar
  27. Woodman, G. F., Vogel, E. K., & Luck, S. J. (2012). Flexibility in visual working memory: Accurate change detection in the face of irrelevant variations in position. Visual Cognition, 20, 1–28. doi: 10.1080/13506285.2011.630694 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi: 10.1038/nature06860 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428. doi: 10.1111/j.1467-9280.2009.02322.x PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of ZurichZurichSwitzerland
  2. 2.Department of Psychology, Cognitive Psychology UnitUniversity of ZürichZurichSwitzerland

Personalised recommendations