Batt, L., Batt, M., Baguley, J., & McGreevy, P. (2008). Stability of motor lateralisation in maturing dogs. Laterality, 13, 468-479. https://doi.org/10.1080/13576500802201505
Article
PubMed
Google Scholar
Bell, A. T. A., Niven, J. E. (2016) Strength of forelimb lateralization predicts motor errors in an insect. Biology Letters, 12, 20160547. https://doi.org/10.1098/rsbl.2016.0547
Article
PubMed
PubMed Central
Google Scholar
Brown, C., & Braithewaite, V. A. (2005). Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behavioral Ecology, 16, 482-487. doi:https://doi.org/10.1093/beheco/ari016
Article
Google Scholar
Brown, C., Gardner, C., & Braithwaite, V. A. (2004). Population variation in lateralized eye use in the poeciliid Brachyraphis episcopi. Proceedings of the Royal Society London B, 271, (Suppl) S455-457. https://doi.org/10.1098/rsbl.2004.0222
Article
Google Scholar
Chow, P. K., Lea, S. E. G., & Leaver, L. A. (2016). How practice makes perfect: the role of persistence, flexibility and learning in problem-solving efficiency. Animal Behaviour 112, 273-283. https://doi.org/10.1016/j.anbehav.2015.11.014
Article
Google Scholar
Clayton, N. S., & Krebs, J. R. (1994). Memory for spatial and object-specific cues in food-storing and non-storing birds. Journal of Comparative Physiology, 174, 371-379.
Google Scholar
Corballis, M. C. (2009). The evolution and genetics of cerebral asymmetry. Philosophical Transactions of the Royal Society B, 364, 867-879. doi:https://doi.org/10.1098/rstb.2008.0232
Article
Google Scholar
Dadda, M., Agrillo, C., Bisazza, A., & Brown, C. (2015). Laterality enhances numerical skills in the guppy, Poecilia reticulata. Frontiers in Behavioural Neuroscience, 9, 285. doi:https://doi.org/10.3389/fnbeh.2015.00285
Article
Google Scholar
Dadda M, Koolhaas WH, Domenici P (2010) Behavioural asymmetry affects escape performance in a teleost fish. Biology Letters, 6, 414–417.
Article
Google Scholar
Dadda, M., Zandona, E., Agrillo, C., & Bisazza, A. (2009). The costs of hemispheric specialization in a fish. Proceedings of the Royal Society London B, 276, 4399-4407. doi:https://doi.org/10.1098/rspb.2009.1406
Found, R. & St. Clair, C. C. (2017). Ambidextrous ungulates have more flexible behaviour, bolder personalities and migrate less. Royal Society Open Science, 4, 160958.
https://doi.org/10.1098/rsos.160958
Article
PubMed
PubMed Central
Google Scholar
Frasnelli, E., & Vallortigara, G. (2018). Individual-level and population-level lateralization: two sides of the same coin. Symmetry, 10, 739. doi:https://doi.org/10.3390/sym10120739
Article
Google Scholar
Frasnelli, E., Vallortigara, G., & Rogers, L. J. (2012). Left-right asymmetries of behaviour and nervous system in invertebrates. Neuroscience and Biobehavioral Reviews, 36, 1273-1291. doi:https://doi.org/10.1016/j.neubiorev.2012.02.006
Article
PubMed
Google Scholar
Friard, O. & Gamba, M. (2016). BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7, 1325-1330. https://doi.org/10.1111/2041-210X.12584
Article
Google Scholar
Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain, 123, 1293-1326.
Article
Google Scholar
Ghirlanda, S. & Vallortigara, G. (2004). The evolution of brain lateralization: a game-theoretical analysis of population structure. Proceedings of the Royal Society London B, 271, 853-857. doi:https://doi.org/10.1098/rspb.2003.2669
Article
Google Scholar
Güntürkün, O., Diekamp, B., Manns, M., Nottelmann, F., Prior, H., Schwarz, A., & Skiba, M. (2000). Asymmetry pays: visual lateralization improves discrimination success in pigeons. Current Biology, 10, 1079–1081. https://doi.org/10.1016/S0960-9822(00)00671-0
Article
PubMed
Google Scholar
Hirnstein, M., Leask, S., Rose, J., & Hausmann, M. (2010). Disentangling the relationship between hemispheric asymmetry and cognitive performance. Brain and Cognition, 73, 119-127. doi:https://doi.org/10.1016/j.bandc.2010.04.002
Article
PubMed
Google Scholar
Hörster, W., & Ettlinger, G. (1985). An association between hand preference and tactile discrimination performance in the rhesus monkey. Neuropsychologia, 23, 411-413. https://doi.org/10.1016/0028-3932(85)90027-2
Article
PubMed
Google Scholar
IBM Corp. 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
Google Scholar
Langley, E. J. G., van Horik, J. O., Whiteside, M. A., & Madden, J. R. (2018), Group social rank is associated with performance on a spatial learning task. Royal Society Open Science, 5, 171475. https://doi.org/10.1098/rsos.171475
Article
PubMed
PubMed Central
Google Scholar
Lea, S. E. G., Chow, P. K. Y., Leaver, L. A., & McLaren, I. P. L. (This Issue). Behavioral flexibility: A review and a model. Learning and Behavior.
Leaver, L. A., Hopewell, L., Caldwell, C., & Mallarky, L. (2007). Audience effects on food caching in grey squirrels (Sciurus carolinensis): evidence for pilferage avoidance strategies. Animal Cognition, 10, 23-27. doi:https://doi.org/10.1007/s10071-006-0026-7
Article
PubMed
Google Scholar
Macdonald, I. M. V. (1997). Field experiments on duration and precision of grey and red squirrel spatial memory. Animal Behaviour, 54, 879-891. https://doi.org/10.1006/anbe.1996.0528
Article
PubMed
Google Scholar
Magat, M., & Brown, C. (2009). Laterality enhances cognition in Australian parrots. Proceedings of the Royal Society London B, 276, 4155-4162. doi:https://doi.org/10.1098/rspb.2009.1397
Article
Google Scholar
Marchall-Pescini, S., Barnard, S, Branson, N. J., & Valsecchi, P. (2013). The effect of preferential paw usage on dogs’ (Canis familiaris) performance in a manipulative problem-solving task. Behavioural Processes, 100, 40-43.
Article
Google Scholar
McGrew, W. C., & Marchant, L. F. (1999). Laterality of hand use pays off in foraging success for wild chimpanzees. Primates, 40, 509-513.
Article
Google Scholar
Miler, K., Kuszewska, K., Zuber, G., & Woyciechowski, M. (2018). Larval antlions show a cognitive ability/hunting efficiency trade-off connected with the level of behavioural asymmetry. Animal Cognition, 21, 613-617. https://doi.org/10.1007/s10071-018-1190-2
Article
PubMed
PubMed Central
Google Scholar
Nettle, D. (2003). Hand laterality and cognitive ability: A multiple regression approach. Brain and Cognition, 52, 390–398. https://doi.org/10.1016/S0278-2626(03)00187-8
Ocklenburg, S., & Güntürkün, O. (2012). Hemispheric asymmetries: the comparative view. Frontiers in Psychology, 3, 5. https://doi.org/10.3389/fpsyg.2012.00005
Article
PubMed
PubMed Central
Google Scholar
Phelps, E. A., Hirst, W., & Gazzaniga, M.S. (1991) Deficits in recall following partial and complete commissurotomy. Cerebral Cortex, 1, 492–8.
Article
Google Scholar
Piddington, T., & Rogers, L. J. (2013). Strength of hand preference and dual task performance by common marmosets. Animal Cognition, 16, 127-135. doi: https://doi.org/10.1007/s10071-012-0562-2
Article
PubMed
Google Scholar
Reddon, A. R., & Hurd, P. L. (2009). Individual differences in cerebral lateralization are associated with shy–bold variation in the convict cichlid. Animal Behaviour, 77, 189-183. doi:https://doi.org/10.1016/j.anbehav.2008.09.026
Article
Google Scholar
Ringo, J. L., Doty, R. W., Demeter, S., & Simard, P. Y. (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cerebral Cortex, 4, 331-43. https://doi.org/10.1093/cercor/4.4.331
Article
PubMed
Google Scholar
Rogers, L.J. (2009). Hand and paw preferences in relation to the lateralized brain. Philosophical Transactions of the Royal Society B: Biological SciencesVolume 364, 1519, 943-954. https://doi.org/10.1098/rstb.2008.0225
Rogers, L. J. (2017). A matter of degree: strength of brain asymmetry and behaviour. Symmetry, 9, 57. doi:https://doi.org/10.3390/sym9040057
Article
Google Scholar
Rogers, L. J., & Andrew, R. J. (2002). Comparative vertebrate lateralization. Cambridge University Press.
Rogers, L. J., Vallortigara, G., & Andrew, R. J. (2013). Divided Brains. Cambridge University Press.
Rogers, L. J., Zucca, P., & Vallortigara, G. (2004). Advantages of having a lateralized brain. Proceedings of the Royal Society London B, 271(Suppl. 6), S420-S422. doi:https://doi.org/10.1098/rsbl.2004.0200
Article
Google Scholar
RStudio Team. (2018). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.
Sfar, N., Mangalam, M., Kaumanns, W., & Singh, M. (2014). A comparative assessment of hand preference in captive red howler monkeys, Alouatta seniculus and yellow-breasted capuchin monkeys, Sapajus xanthosternos. PLoS ONE, 9, e107838. https://doi.org/10.1371/journal.pone.0107838
Article
PubMed
PubMed Central
Google Scholar
Smulders, T. V., Gould, K. L., & Leaver, L. A. (2010). Using ecology to guide the study of cognitive and neural mechanisms of different aspects of spatial memory in food-hoarding animals. Philosophical Transaction of the Royal Society B, 365, 883-900. https://doi.org/10.1098/rstb.2009.0211
Article
Google Scholar
Sol, D., Timmermans, S., & Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour, 63, 495–502. doi:https://doi.org/10.1006/anbe.2001.1953
Article
Google Scholar
Ströckens, F., Güntürkün, O., & Ocklenburg, S. (2013). Limb preferences in non-human vertebrates. Laterality: Asymmetries of Body, Brain and Cognition, 18, 536-575. https://doi.org/10.1080/1357650X.2012.723008
Article
Google Scholar
Tommasi, L., & Vallortigara, G. (2001). Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behavioral Neuroscience, 115, 602-613. https://doi.org/10.1037/0735-7044.115.3.602
Vallortigara, G., & Rogers, L. J. (2005). Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behavioral and Brain Sciences, 28, 575-633. https://doi.org/10.1017/S0140525X05000105
Article
PubMed
Google Scholar
van Horik, J. O., Langley, E. J. G., Whiteside, M. A., & Madden, J. R. (2017). Differential participation in cognitive tests is driven by personality, sex, body condition and experience. Behavioural Processes, 134, 22-30. https://doi.org/10.1016/j.beproc.2016.07.001
Article
PubMed
Google Scholar
Versace, E., & Vallortigara, G. (2015). Forelimb preferences in human beings and other species: multiple models for testing hpotheses on lateralization. Frontiers in Psychology, 6, 233. https://doi.org/10.3389/fpsyg.2015.00233
Waterman, J. (2010). The adaptive function of masturbation in a promiscuous African ground squirrel. PLoS ONE, 5. doi:https://doi.org/10.1371/journal.pone.0013060
Wells, D. L. (2003). Lateralised behaviour in the domestic dog, Canis familiaris. Behavioural Processes, 61, 27-35. https://doi.org/10.1016/S0376-6357(02)00161-4
Article
PubMed
Google Scholar
Whiteside, M. A., Bess, M. M., Frasnelli, E., Beardsworth, C. E., Langley, E. J. G., van Horik, J. O., & Madden, J. R. (2018). Low survival of strongly footed pheasants may explain constraints on lateralization. Scientific Reports, 8, 13791. doi:https://doi.org/10.1038/s41598-018-32066-1
Article
PubMed
PubMed Central
Google Scholar
Whiteside, M. A., Bess, M. M., Frasnelli, E., Beardsworth, C. E., Langley, E. J. G., van Horik, J. O., & Madden, J. R. (This Issue). No evidence that footedness in pheasants influences cognitive performance in tasks assessing colour discrimination and spatial ability. Learning and Behavior.