Abizaid, A., Liu, Z.-W., Andrews, Z.B., Shanabrough, M., Borok, E., Elsworth, J.D., ..., Horvath, T.L. (2006). Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. The Journal of Clinical Investigation, 116(12), 3229–3239.
PubMed
PubMed Central
Article
Google Scholar
Aitken, T.J., Greenfield, V.Y., & Wassum, K.M. (2016). Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues. Journal of Neurochemistry, 136(5), 1026–1036.
PubMed
PubMed Central
Article
Google Scholar
Akam, T., Costa, R., & Dayan, P. (2015). Simple plans or sophisticated habits? State, transition and learning interactions in the two-step task. PLOS Computational Biology, 11(12), e1004648.
PubMed
PubMed Central
Article
Google Scholar
Aw, J.M., Holbrook, R., Burt de Perera, T., & Kacelnik, A. (2009). State-dependent valuation learning in fish: Banded tetras prefer stimuli associated with greater past deprivation. Behavioural Processes, 81 (2), 333–336.
PubMed
Article
Google Scholar
Bartholdy, S., Cheng, J., Schmidt, U., Campbell, I.C., & O’Daly, O.G. (2016). Task-based and questionnaire measures of inhibitory control are differentially affected by acute food restriction and by motivationally salient food stimuli in healthy adults. Frontiers in Psychology, 7(AUG), 1–13.
Google Scholar
Bond, A., & Lader, M. (1974). The use of analogue scales in rating subjective feelings. British Journal of Medical Psychology, 47(3), 211–218.
Article
Google Scholar
Briers, B., Pandelaere, M., Dewitte, S., & Warlop, L. (2006). Hungry for money. Psychological Science, 17(11), 939–943.
PubMed
Article
Google Scholar
Compan, V., Walsh, B.T., Kaye, W., & Geliebter, A. (2015). How does the brain implement adaptive decision making to eat? Journal of Neuroscience, 35(41), 13868–13878.
PubMed
Article
Google Scholar
Cone, J.J., Fortin, S.M., McHenry, J.A., Stuber, G.D., McCutcheon, J.E., & Roitman, M.F. (2016). Physiological state gates acquisition and expression of mesolimbic reward prediction signals. Proceedings of the National Academy of Sciences of the United States of America, 113(7), 1943–1948.
PubMed
PubMed Central
Article
Google Scholar
Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., & Dolan, R.J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69(6), 1204–1215.
PubMed
PubMed Central
Article
Google Scholar
de Ridder, D., Kroese, F., Adriaanse, M., & Evers, C. (2014). Always gamble on an empty stomach: hunger is associated with advantageous decision making. PLoS ONE, 9(10), e111081.
PubMed
PubMed Central
Article
Google Scholar
Deroche, V., Marinelli, M., Maccari, S., Le Moal, M., Simon, H., & Piazza, P.V. (1995). Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. Journal of Neuroscience, 15(11), 7181–7188.
PubMed
Article
Google Scholar
Deserno, L., Huys, Q.J., Boehme, R., Buchert, R., Heinze, H.J., Grace, A.A., ..., Schlagenhauf, F. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 1595–1600.
PubMed
PubMed Central
Article
Google Scholar
Dickinson, A., & Balleine, B.W. (1994). Motivational control of goal-directed action. Animal Learning and Behavior, 22(1), 1–18.
Article
Google Scholar
Dickinson, A.D. (1985). Actions and habits: the development of behavioural autonomy. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 308(1135), 67–78.
Article
Google Scholar
Elmquist, J.K., Bjørbæk, C., Ahima, R.S., Flier, J.S., & Saper, C.B. (1998). Distributions of leptin receptor mRNA isoforms in the rat brain. Journal of Comparative Neurology, 395(4), 535–547.
Article
Google Scholar
Epstein, L.H., Truesdale, R., Wojcik, A., Paluch, R.A., & Raynor, H.A. (2003). Effects of deprivation on hedonics and reinforcing value of food. Physiology and Behavior, 78(2), 221–227.
PubMed
Article
Google Scholar
Feher da Silva, C., & Hare, T. (2020). Humans primarily use model-based inference in the two-stage task. Nature Human Behaviour, 4(10), 1053–1066.
PubMed
Article
Google Scholar
Figlewicz, D.P., MacDonald Naleid, A., & Sipols, A.J. (2007). Modulation of food reward by adiposity signals. Physiology and Behavior, 91(5), 473–8.
PubMed
Article
Google Scholar
Flint, A., Raben, A., Blundell, J.E., & Astrup, A. (2000). Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. International Journal of Obesity, 24(1), 38–48.
PubMed
Article
Google Scholar
Friedel, E., Koch, S.P., Wendt, J., Heinz, A., Deserno, L., & Schlagenhauf, F. (2014). Devaluation and sequential decisions: linking goal-directed and model-based behavior. Frontiers in Human Neuroscience, 8, 587.
PubMed
PubMed Central
Article
Google Scholar
Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J.P. (2010). States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66(4), 585–595.
PubMed
PubMed Central
Article
Google Scholar
Glimcher, P.W., & Fehr, E. (2013) Neuroeconomics: Decision Making and the Brain: Second Edition. Amsterdam: Elsevier Inc.
Google Scholar
Grosskurth, E.D., Bach, D.R., Economides, M., Huys, Q.J.M., & Holper, L. (2019). No substantial change in the balance between model-free and model-based control via training on the two-step task. PLoS Computational Biology, 15(11), e1007443.
PubMed
PubMed Central
Article
Google Scholar
Guitart-Masip, M., Fuentemilla, L., Bach, D.R., Huys, Q.J.M., Dayan, P., Dolan, R.J., & Duzel, E. (2011). Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(21), 7867–75.
Article
Google Scholar
Haase, L., Cerf-Ducastel, B., & Murphy, C. (2009). Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. NeuroImage, 44(3), 1008–1021.
PubMed
Article
Google Scholar
Hassenstab, J.J., Sweet, L.H., Del Parigi, A., McCaffery, J.M., Haley, A.P., Demos, K.E., ..., Wing, R.R. (2012). Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance: A preliminary MRI study. Psychiatry Research - Neuroimaging, 202(1), 77–79.
Article
Google Scholar
Higgs, S., Spetter, M.S., Thomas, J.M., Rotshtein, P., Lee, M., Hallschmid, M., & Dourish, C.T. (2017). Interactions between metabolic, reward and cognitive processes in appetite control: Implications for novel weight management therapies. Journal of Psychopharmacology, 31(11), 1460–1474.
PubMed
Article
Google Scholar
Hommel, J.D., Trinko, R., Sears, R.M., Georgescu, D., Liu, Z.W., Gao, X.B., ..., DiLeone, R.J. (2006). Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron, 51(6), 801–810.
PubMed
Article
Google Scholar
Kirk, J., & Logue, A. (1997). Effects of deprivation level on humans’ Self-Control for food reinforcers. Appetite, 28(3), 215–226.
PubMed
Article
Google Scholar
Kool, W., Cushman, F.A., & Gershman, S.J. (2016). When does model-based control pay off? PLOS Computational Biology, 12(8), e1005090.
PubMed
PubMed Central
Article
Google Scholar
Lee, S.W., Shimojo, S., & O’Doherty, J.P. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81(3), 687–699.
PubMed
PubMed Central
Article
Google Scholar
Levy, D.J., Thavikulwat, A.C., & Glimcher, P.W. (2013). State dependent valuation: the effect of deprivation on risk preferences. PLoS ONE, 8(1), e53978.
PubMed
PubMed Central
Article
Google Scholar
MacKay, D.J.C. (2003) Information theory, inference, and learning algorithms Vol. 13. Cambridge: Cambridge University Press. 7.2 edition.
Google Scholar
Malik, S., McGlone, F., Bedrossian, D., & Dagher, A. (2008). Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metabolism, 7(5), 400–409.
PubMed
Article
Google Scholar
Otto, A.R., Raio, C.M., Chiang, A., Phelps, E.A., & Daw, N.D. (2013). Working-memory capacity protects model-based learning from stress. Proceedings of the National Academy of Sciences, 110(52), 20941–20946.
Article
Google Scholar
Palminteri, S., Lefebvre, G., Kilford, E.J., & Blakemore, S.J. (2017). Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing. PLoS Computational Biology, 13(8), e1005684.
PubMed
PubMed Central
Article
Google Scholar
Papageorgiou, G.K., Baudonnat, M., Cucca, F., & Walton, M.E. (2016). Mesolimbic dopamine encodes prediction errors in a state-dependent manner. Cell Reports, 15(2), 221–228.
PubMed
Article
Google Scholar
Park, H., Lee, D., & Chey, J. (2017). Stress enhances model-free reinforcement learning only after negative outcome. PLoS ONE, 12(7), e0180588.
PubMed
PubMed Central
Article
Google Scholar
Pompilio, L., Kacelnik, A., & Behmer, S.T. (2006). State-dependent learned valuation drives choice in an invertebrate. Science, 311(5767), 1613–1615.
PubMed
Article
Google Scholar
Radenbach, C., Reiter, A.M., Engert, V., Sjoerds, Z., Villringer, A., Heinze, H.J., ..., Schlagenhauf, F. (2015). The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology, 53, 268–280.
PubMed
Article
Google Scholar
Rummery, G.A., & Niranjan, M. (1994). On-Line Q-Learning Using connectionist systems. Technical report, Cambridge University Engineering Department.
Saper, C.B., Chou, T.C., & Elmquist, J.K. (2002). The need to feed: Homeostatic and hedonic control of eating.
Shabat-Simon, M., Shuster, A., Sela, T., & Levy, D.J. (2018). Objective physiological measurements but not subjective reports moderate the effect of hunger on choice behavior. Frontiers in Psychology, 9, 750.
PubMed
PubMed Central
Article
Google Scholar
Shahar, N., Moran, R., Hauser, T.U., Kievit, R.A., McNamee, D., Moutoussis, M., ..., Dolan, R.J. (2019). Credit assignment to state-independent task representations and its relationship with model-based decision making, (Vol. 116 pp. 15871– 15876).
Siep, N., Roefs, A., Roebroeck, A., Havermans, R., Bonte, M.L., & Jansen, A. (2009). Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behavioural Brain Research, 198(1), 149–158.
PubMed
Article
Google Scholar
Simon, J.J., Wetzel, A., Sinno, M.H., Skunde, M., Bendszus, M., Preissl, H., ..., Friederich, H.-C. (2017). Integration of homeostatic signaling and food reward processing in the human brain Joe. JCI Insight, 2(15), e92970.
PubMed Central
Article
Google Scholar
Skrynka, J., & Vincent, B.T. (2019). Hunger increases delay discounting of food and non-food rewards. Psychonomic Bulletin and Review, 29, 1729–1737.
Article
Google Scholar
Smittenaar, P., FitzGerald, T.H.B., Romei, V., Wright, N.D., & Dolan, R.J. (2013). Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free control in humans. Neuron, 80(4), 914–919.
PubMed
PubMed Central
Article
Google Scholar
Symmonds, M., Emmanuel, J.J., Drew, M.E., Batterham, R.L., & Dolan, R.J. (2010). Metabolic state alters economic decision making under risk in humans. PloS ONE, 5(6), e11090.
PubMed
PubMed Central
Article
Google Scholar
van Swieten, M.M.H. (2020). Physiological modulation of learning and decision-making. PhD thesis, University of Oxford.
van Swieten, M.M.H., Manohar, S.G., & Bogacz, R. (2021). Effects of hunger on model-based and model-free decision-making.
Voon, V., Derbyshire, K., Rück, C., Irvine, M.A., Worbe, Y., Enander, J., ..., Bullmore, E.T. (2015). Disorders of compulsivity: a common bias towards learning habits. Molecular Psychiatry, 20(3), 345–352.
PubMed
Article
Google Scholar
Wilson, R.C., & Collins, A.G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8, e49547.
PubMed
PubMed Central
Article
Google Scholar
Wunderlich, K., Smittenaar, P., & Dolan, R.J. (2012). Dopamine enhances Model-Based over Model-Free choice behavior. Neuron, 75(3), 418–424.
PubMed
PubMed Central
Article
Google Scholar
Zigman, J.M., Jones, J.E., Lee, C.E., Saper, C.B., & Elmquist, J.K. (2006). Expression of ghrelin receptor mRNA in the rat and the mouse brain. The Journal of Comparative Neurology, 494(3), 528–548.
PubMed
PubMed Central
Article
Google Scholar