Subjects
A total of 30 subjects took part in the experiment. Subjects reported normal or corrected-to-normal vision and were proficient in written and spoken English. After the preprocessing, EEG data of 12 subjects were not entered the further analyses as they had fewer than 30 trials in one of the mental states per task. This was caused by artifacts in the recorded EEG signal in combination with fewer reports in one of the two mental states. The data reported are from the remaining 18 subjects (13 females, ages 18–30 years, M = 23.33, SD = 2.81 ). One of them was left-handed. For the participants included, at least 72% of the collected trials remained. In the SART, the mean trial count was 97.33 (SD = 40.14) in the on-task class and 98.33 (SD = 37.50) in mind-wandering. In the visual search task, the mean trial count was 132.90 (SD = 42.15) for on-task and 89.61 (SD = 44.99) for mind-wandering. The research was conducted following the Declaration of Helsinki. Subjects gave written informed consent. They were paid 40 euros total for participation in two experimental sessions of 2.5 hours each.
Procedure
The experiment included two sessions, each lasting approximately 2.5 h, including the EEG setup time. Participants performed the experiment in a sound-attenuating booth. The tasks were programmed and presented in OpenSesame (Mathôt, Schreij, & Theeuwes, 2012). EEG was continuously recorded during the tasks with a Biosemi 128-channel system.
In the SART, white stimuli were presented in the center of the screen against a black background (see Fig. 1a). Each trial began with a fixation cross for a uniformly sampled period between 1.5 s ~ 2.1 s. Each word stimulus appeared for 300 ms followed by a 900-ms mask. The intertrial interval was 3 s. Word stimuli subtended a visual angle of approximately 0.75° vertically and 1.5° ~ 10.5° horizontally. Participants were instructed to press “m” whenever they saw a frequent lowercase word (i.e., nontarget) that occurred 89% of the time and to withhold responding when they saw a rare uppercase word (i.e., target) that occurred 11% of the time.
In the visual search task, blue stimuli were presented in the center of the screen against a black background. At the beginning of each block, there was an instruction about the target to search. Each trial began with a fixation cross for a period of 1.5 s ~ 2.1 s. Each search panel appears for 3 s with a visual angle of 7.47° × 7.47° both horizontally and vertically. Participants were instructed to tell whether a target was presented by pressing the left arrow for “yes” and the right arrow for “no.” There was an equal probability of the target-present and the target-absent trials.
Tasks included 12 blocks (six blocks for each task in each session). A SART block has 135 trials and a visual search block has 140 trials. The timeline of each trial is depicted in Fig. 1.
The subjects were seated at a distance of approximately 60 cm in front of the display. They were instructed to remain still, keep their eyes focused on the screen, and refrain from blinking while performing the tasks. The sequence of task administration was counterbalanced across subjects and sessions. Subjects were given breaks between blocks while the experimenter checked and corrected the electrode impedances.
Stimuli
The materials for the SART were 283 English words of regular usage, for example, geographical locations (e.g., America), nature (e.g., sea), time (e.g., evening), and other categories (see Appendix A for the full list of words). Word length ranged from two to 14 letters. The words were taken from a previous study of mind-wandering (van Vugt & Broers, 2016).
In the visual search task, materials were square search panels consisting of 4–8 squares or circles of equal size. The target to search could be either a square or circle, and a target was present on half of the trials.
Experience-sampling thought probes
Both tasks were interrupted by probe questions, asking subjects to report their thoughts at that moment. Subjects could choose one of six options: (1) I entirely concentrated on the ongoing task; (2) I evaluated aspects of the task (e.g., my performance or how long it takes); (3) I thought about personal matters; (4) I was distracted by my surroundings (e.g., noise, temperature, my physical condition); (5) I was daydreaming, thinking of task unrelated things; (6) I was not paying attention, but my thought wasn’t anywhere specifically. These thought probes were derived from our previous experiments (Huijser, van Vugt, & Taatgen, 2018). Participants answered the questions by pressing the corresponding number on the keyboard.
In the SART, probes always appeared after a no-go trial. There were 54 probe questions in each task. Two consecutive probes were separated by 7–24 trials, which meant thought probes occurred roughly every 34–144 seconds.
EEG recording and offline processing
Continuous EEG was recorded by a Biosemi 128-channel system with six additional electrodes used to detect eye movements and measure mastoid signals. The sampling rate was 512 Hz. An electrode next to the vertex electrode was used as the reference during recording. Impedances were kept below 40 kΩ. Off-line EEG preprocessing was performed with the EEGLAB toolbox (Version13.6.5b; Delorme & Makeig, 2004) in MATLAB (Version 2013b).
For off-line analysis, continuous data were rereferenced to the average signal of mastoids, band-pass filtered (0.5–40 Hz), down-sampled to 256 Hz, and segmented into epochs of 1,600 ms (400 ms before and 1,200 ms after stimulus onset). Bad channels were identified by visual inspection (channels with excessive spikes or with a noisier signal than surrounding channels) and replaced through spherical interpolation before artifact rejection. We performed infomax independent component analysis (ICA) for ocular artifact detection and removal. Additionally, data segments were inspected visually to screen for artifacts.
Data analysis
Trial classification
Six trials proceeding each probe were analyzed, accounting for roughly 30–36 seconds.Footnote 1 This practice followed the assumption that the periodic fluctuations in attention might be supported by very low frequency (0.01–0.1 Hz) coherence within the default mode network (Sonuga-Barke & Castellanos, 2007), and, typically mind-wandering would persist for more than a single trial (Bastian & Sackur, 2013). Trials selected were either labeled as mind-wandering or on-task state based on subjects’ responses to the probes. Probe Responses 1 (I entirely concentrated on the ongoing task) and 2 (I evaluated aspects of the task) were defined as a task-related mental activity. Responses 3 (I thought about personal matters) and 5 (I was daydreaming, thinking of task unrelated things) indicated self-generated task-unrelated thoughts; thus, they were considered as mind-wandering.Footnote 2 There were two particular cases that did not fit either category. Response 4 (I was distracted by my surroundings) indicated off-task thought triggered by the external environment or from body sensations. This kind of thinking is usually classified as distraction instead of mind-wandering (Christoff et al., 2016). In addition, Response 6 (I was not paying attention, but my thought wasn’t anywhere specifically) indicates a mind-blanking state without involvement in self-generated thoughts (Ward & Wegner, 2013). These responses were excluded from further analyses. These thought categories accounted for 1.85%–30.56% of the total reports across subjects (M = 16.05%, SD = 8.86%).
Behavioral measures
We computed accuracy and average response time of the correct trials for each mental state for each task for each subject. Performance in different mental states was compared using paired t tests. Effect size was reported as Cohen’s d.
Single-trial ERP
To detect EEG components in each trial, we used the single-trial ERP methodology (Bostanov, 2004; Bostanov & Kotchoubey, 2006). Different from traditional ERP analysis, which averages the signal across trials for noise removal, single-trial ERP first builds an ideal ERP waveform using a Mexican hat function:
$$ \psi (t)=\left(1-16{t}^2\right){e}^{-8{t}^2} $$
(1)
and computes its cross-covariance with the single-trial EEG signal
$$ W\left(s,t\right)=\frac{1}{\sqrt{s}}\underset{-\infty }{\overset{\infty }{\int }}f\left(\tau \right)\psi \left(\frac{\tau -t}{s}\right) d\tau . $$
(2)
Like a template-matching process, the computation involves two arguments: the time lag t indicates the peak position of the computed ERP waveform; the scale s indicates the breadth of the computed waveform along the x-axis (approximately the wavelength; see Fig. 2a). By using a set of s and r values, the resulting Ws can be plotted in a contour plot with t as the x-axis and s as the y-axis. The local extreme W indicates the best matching template of the signal and the W at this point gives the measure of the single-trial ERP amplitude (see Fig. 2b–c).
The ERP components of interest are the lateral parietal-occipital P1 and N1, and the parietal P3. We computed P1 as the positive extreme between 50 ms and 150 ms at A10 and B7 in the Biosemi 128-channel system (approximately PO7 and PO8 in the 10–20 system; Di Russo, Martínez, Sereno, Pitzalis, & Hillyard, 2002) and N1 as the negative extreme between 100 ms and 200 ms at the same channels (Hopf, Vogel, Woodman, Heinze, & Luck, 2002). P3 was measured as the positive local extreme between 250 ms and 600 ms at A19 (approximately Pz in the 10–20 system). Each component in each trial can be described by a set of three values: the amplitude W, the time lag t, and the scale s.
Time-frequency analysis
The clean EEG signal at A10, A19, B7, and C21 (approximately PO7, Pz, PO8, and Fz in the 10–20 system) was band-pass filtered and Hilbert transformed to be decomposed into alpha (8.5–12 Hz) and theta (4–8 Hz) bands. Channels were selected based on their central positions in frontal (C21), parietal (A19), and bilateral occipital areas (A10 and B7).
For each band, the filter kernel was constructed by the MATLAB function firls(). The ideal filter was “plateau-shaped” in a way that the frequency range in the band were the “highland” (set as 1) and the surrounding frequency were “flat” (set as 0). The transition widths were 20%. The length of each filter kernel was long enough to ensure at least three cycles of the lowest frequency in each band. The constructed filter by firls() were checked through computing its sum of squared errors (SSE) compared with the ideal filter to ensure it is below 1. After applying the kernel to the EEG signal, the data were Hilbert-transformed by the MATLAB function hilbert() to convert to the analytical signal (each data point is in complex form) so that the further computation based on the power or phase information can be performed (Cohen, 2014, Chapter 14). Hilbert transforms allow for the most accurate computation of the signal’s phase, which is crucial for computing oscillatory synchrony.
After transforming the band-pass filtered data into an analytical signal, power was computed as the square of the absolute value at each time point. Coherence was indicated by the intersite phase clustering (ISPC). ISPC were computed through taking the average of phase angle differences between electrodes over time (Cohen, 2014, Chapter 26):
$$ ISP{C}_f=\mid {n}^{-1}\sum \limits_{t=1}^n{e}^{i\left({\phi}_{xt}-{\phi}_{yt}\right)}\mid, $$
(3)
in which n is the number of time points. ϕxand ϕy are phase angles from electrode x and y at frequency f.
Both power and ISPC at each time point were averaged in two periods: baseline (−400–0 ms) and after stimulus onset (0–600 ms) separately.
Machine learning
We included the measures of single-trial P1, N1, and P3 as well as power and ISPC at the selected channels in alpha and theta bands as markers for our classifier. In total, we had 25 potential predictors (see Fig. 5) for the classification of mental states in each trial. The machine-learning algorithm used is the support vector machine (SVM) because of its high performance in EEG classification (Lotte, Congedo, Lecuyer, Lamarche, & Arnaldi, 2007). Moreover, SVM does not assume that the relationship between labels and predictors is linear.Footnote 3 Given that we did not have a specific assumption about the relationship between EEG markers and mind-wandering states, we considered SVM to be more appropriate. Markers were z-transformed before entering the classifier. SVM learning was performed using the e1071 package in R. A radial kernel (RBF) was performed to allow for the possibility of a nonlinear separating boundary. The optimal regularization parameter C and the RBF parameter γ were obtained through grid search.
Considering individual differences in EEG patterns, model fitting was performed on each individual. If the data sample size was imbalanced between classes (e.g., if one had a mind-wandering rate of 70%, then 70% of the data were labeled as mind-wandering and 30% as on-task), we copied the cases from the minority class to make the training sample balanced (random oversampling; Chawla, 2005). Models were validated by leave-one-out cross validation (LOOCV). LOOCV is a validation method that in each loop of training, one case from the whole data sample is left to be tested while the rest of the cases form the training sample. The training loop iterates until all the cases have been tested. Performance was measured as prediction accuracy, sensitivity, and specificity. Sensitivity is also called the true positive rate. It is calculated as the proportion of positives that are correctly classified as such (i.e., the percentage of mind-wandering trials that are correctly classified as the mind-wandering state). Specificity is also called the true negative rate. It is the proportion of negatives that are correctly classified as such (i.e., the percentage of on-task trials that are correctly classified as the on-task state). Across-task prediction was performed by training data on one task and testing the obtained model on the data of the other task.
Furthermore, to investigate the respective contributions of the EEG markers, we trained models using each marker separately. In this modeling process, we pooled the normalized data from both tasks before training and tested them using LOOCV.