Abrams, R. A., Davoli, C. C., Du, F., Knapp, W. H., & Paull, D. (2008). Altered vision near the hands. Cognition, 107(3), 1035–1047. https://doi.org/10.1016/j.cognition.2007.09.006
Article
PubMed
Google Scholar
Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15, 122–131.
Article
Google Scholar
Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16(8), 637–643. https://doi.org/10.1111/j.1467-9280.2005.01587.x
Article
PubMed
Google Scholar
Aly, M., & Turk-Browne, N. B. (2017). How hippocampal memory shapes, and is shaped by, attention. In: The hippocampus from cells to systems: structure, connectivity, and functional contributions to memory and flexible cognition (pp. 369–403). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-50406-3_12
Chapter
Google Scholar
Ásgeirsson, Á. G., Kristjánsson, Á., & Bundesen, C. (2015). Repetition priming in selective attention: A TVA analysis. Acta Psychologica, 160, 35–42. https://doi.org/10.1016/j.actpsy.2015.06.008
Article
PubMed
Google Scholar
Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 12(5), 840–847. https://doi.org/10.1162/089892900562444
Article
PubMed
Google Scholar
Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126. https://doi.org/10.1016/S1364-6613(00)01593-X
Article
PubMed
Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation - Advances in Research and Theory, 8(C), 47–89. https://doi.org/10.1016/S0079-7421(08)60452-1
Article
Google Scholar
Baldauf, D., & Deubel, H. (2010). Attentional landscapes in reaching and grasping. Vision Research, 50(11), 999–1013. https://doi.org/10.1016/j.visres.2010.02.008
Article
PubMed
Google Scholar
Ballard, D., Hayhoe, M. M., Li, F., & Whitehead, S. D. (1992). Hand-eye coordination during sequential tasks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 337(1281). https://doi.org/10.1098/rstb.1992.0111
Ballard, D., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 66–80. https://doi.org/10.1162/jocn.1995.7.1.66
Article
PubMed
PubMed Central
Google Scholar
Bays, P. M., & Husain, M. (2008a). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854. https://doi.org/10.1126/science.1158023
Article
PubMed
PubMed Central
Google Scholar
Bays, P. M., & Husain, M. (2008b). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854. https://doi.org/10.1126/science.1158023
Article
PubMed
PubMed Central
Google Scholar
Bekkering, H., Abrams, R. A., & Pratt, J. (1995). Transfer of saccadic adaptation to the manual motor system. Human Movement Science, 14(2), 155–164. https://doi.org/10.1016/0167-9457(95)00003-B
Article
Google Scholar
Boettcher, S. E. P., & Wolfe, J. M. (2015). Searching for the right word: Hybrid visual and memory search for words. Attention, Perception & Psychophysics, 77(4), 1132–1142. https://doi.org/10.3758/s13414-015-0858-9
Article
Google Scholar
Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14325–14329. https://doi.org/10.1073/pnas.0803390105
Article
PubMed
PubMed Central
Google Scholar
Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459–7464. https://doi.org/10.1073/pnas.1520027113
Article
Google Scholar
Brady, T., & Störmer, V. (2020). The role of meaning in visual working memory: Real-world objects, but not simple features, benefit from deeper processing. https://doi.org/10.31234/osf.io/kzvdg
Brascamp, J. W., Blake, R., & Kristjánsson, Á. (2011). Deciding Where to Attend: Priming of Pop-Out Drives Target Selection. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1700–1707. https://doi.org/10.1037/a0025636
Article
PubMed
Google Scholar
Broadbent, D. E. (2004). Perception and communication. Perception and communication. Pergamon Press. https://doi.org/10.1037/10037-000
Brockmole, J. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99–108. https://doi.org/10.1080/13506280500165188
Article
Google Scholar
Bundesen, C., & Habekost, T. (2012). Principles of Visual Attention: Linking Mind and Brain. Principles of Visual Attention: Linking Mind and Brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570707.001.0001
Bush, V. (1936). Instrumental analysis. Bulletin of the American Mathematical Society, 42(10), 649–669. https://doi.org/10.1090/S0002-9904-1936-06390-1
Article
Google Scholar
Carlisle, N. B., & Kristjánsson, Á. (2018). How visual working memory contents influence priming of visual attention. Psychological Research, 82(5), 833–839. https://doi.org/10.1007/s00426-017-0866-6
Article
PubMed
Google Scholar
Castelhano, M. S., & Henderson, J. M. (2005). Incidental visual memory for objects in scenes. Visual Cognition: Special Issue on Real-World Scene Perception, (12), 1017–1040.
Article
Google Scholar
Castelhano, M. S., & Witherspoon, R. L. (2016). How You Use It Matters: Object Function Guides Attention During Visual Search in Scenes. Psychological Science, 27(5), 606–621. https://doi.org/10.1177/0956797616629130
Article
PubMed
Google Scholar
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196–210. https://doi.org/10.1016/j.cognition.2016.04.018
Article
PubMed
Google Scholar
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017a). Learning features in a complex and changing environment: A distribution-based framework for visual attention and vision in general. Progress in Brain Research, 236, 97–120. https://doi.org/10.1016/BS.PBR.2017.07.001
Article
PubMed
Google Scholar
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017b). Rapid learning of visual ensembles. Journal of Vision, 17(2), 21. https://doi.org/10.1167/17.2.21
Article
PubMed
Google Scholar
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017c). Representing Color Ensembles. Psychological Science, 28(10), 1510–1517. https://doi.org/10.1177/0956797617713787
Article
PubMed
Google Scholar
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2020a). Probabilistic rejection templates in visual working memory. Cognition, 196, 104075. https://doi.org/10.1016/j.cognition.2019.104075
Article
PubMed
Google Scholar
Chetverikov, A., Hansmann-Roth, S., Tanrıkulu, Ö. D., & Kristjánsson, Á. (2020b). Feature distribution learning (FDL): A new method for studying visual ensembles perception with priming of attention shifts. In Neuromethods (Vol. 151, pp. 37–57). Humana Press Inc. https://doi.org/10.1007/7657_2019_20
Chetverikov, A., Kuvaldina, M., MacInnes, W. J., Jóhannesson, Ó. I. & Kristjánsson, Á. (2018). Implicit processing during change blindness revealed with mouse-contingent and gaze-contingent displays. Attention, Perception & Psychophysics, 80, 844–859
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. https://doi.org/10.1006/cogp.1998.0681
Article
PubMed
Google Scholar
Chun, M. M., & Jiang, Y. (1999). Top-Down Attentional Guidance Based on Implicit Learning of Visual Covariation. Psychological Science, 10(4), 360–365. https://doi.org/10.1111/1467-9280.00168
Article
Google Scholar
Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(2), 224–234. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12696811
Article
Google Scholar
Cicchini, G. M., Mikellidou, K., & Burr, D. C. (2018). The functional role of serial dependence. Proceedings of the Royal Society B: Biological Sciences, 285(1890), 20181722. https://doi.org/10.1098/rspb.2018.1722
Article
PubMed
Google Scholar
Clarke, A. D., Irons, J. L., James, W., Leber, A. B., & Hunt, A. R. (2020). Stable individual differences in strategies within, but not between, visual search tasks. Quarterly Journal of Experimental Psychology (2006), 1747021820929190. https://doi.org/10.1177/1747021820929190
Article
Google Scholar
Cochrane, B. A., Nwabuike, A. A., Thomson, D. R., & Milliken, B. (2018). An imagery-induced reversal of intertrial priming in visual search. Journal of Experimental Psychology: Learning Memory and Cognition, 44(4), 572–587. https://doi.org/10.1037/xlm0000470
Article
Google Scholar
Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the Bandwidth of Perceptual Experience? Trends in Cognitive Sciences, 20(5), 324–335. https://doi.org/10.1016/j.tics.2016.03.006
Article
PubMed
PubMed Central
Google Scholar
Cunningham, C. A., & Egeth, H. E. (2016). Taming the White Bear: Initial Costs and Eventual Benefits of Distractor Inhibition. Psychological Science, 27(4), 476–485. https://doi.org/10.1177/0956797615626564
Article
PubMed
Google Scholar
Cunningham, C. A., Yassa, M. A., & Egeth, H. E. (2015). Massive memory revisited: Limitations on storage capacity for object details in visual long-term memory. Learning & Memory (Cold Spring Harbor, N.Y.), 22(11), 563–566. https://doi.org/10.1101/lm.039404.115
Article
Google Scholar
David, E., Beitner, J., & Võ, M. L. H. (2020). Effects of transient loss of vision on head and eye movements during visual search in a virtual environment. Brain Sciences, 10(11), 1–26. https://doi.org/10.3390/brainsci10110841
Article
Google Scholar
Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18(1), 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205
Article
PubMed
Google Scholar
Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837. https://doi.org/10.1016/0042-6989(95)00294-4
Article
PubMed
Google Scholar
Deubel, H., Schneider, W. X., & Paprotta, I. (1998). Selective dorsal and ventral processing: Evidence for a common attentional mechanism in reaching and perception. Visual Cognition, 5(1–2), 81–107. https://doi.org/10.1080/713756776
Article
Google Scholar
Draschkow, D., Kallmayer, M., & Nobre, A. C. (2020). When Natural Behavior Engages Working Memory. Current Biology. https://doi.org/10.1016/j.cub.2020.11.013
Draschkow, D., Reinecke, S., Cunningham, C. A., & Võ, M. L.-H. (2018). The lower bounds of massive memory: Investigating memory for object details after incidental encoding. Quarterly Journal of Experimental Psychology, 174702181878372. https://doi.org/10.1177/1747021818783722
Draschkow, D., & Võ, M. L.-H. (2016). Of “what” and “where” in a natural search task: Active object handling supports object location memory beyond the object’s identity. Attention, Perception, & Psychophysics, 78(6), 1574–1584. https://doi.org/10.3758/s13414-016-1111-x
Article
Google Scholar
Draschkow, D., & Võ, M. L.-H. L.-H. (2017). Scene grammar shapes the way we interact with objects, strengthens memories, and speeds search. Scientific Reports, 7(1), 16471. https://doi.org/10.1038/s41598-017-16739-x
Article
PubMed
PubMed Central
Google Scholar
Draschkow, D., Wolfe, J. M., & Võ, M. L.-H. (2014). Seek and you shall remember: scene semantics interact with visual search to build better memories. Journal of Vision, 14(8), 10. https://doi.org/10.1167/14.8.10
Article
PubMed
PubMed Central
Google Scholar
Drew, T., Boettcher, S. E. P., & Wolfe, J. M. (2017). One visual search, many memory searches: An eye-tracking investigation of hybrid search. Journal of Vision, 17(11). https://doi.org/10.1167/17.11.5
Droll, J. A., & Hayhoe, M. M. (2007). Trade-offs between gaze and working memory use. Journal of Experimental Psychology. Human Perception and Performance, 33(6), 1352–1365. https://doi.org/10.1037/0096-1523.33.6.1352
Article
PubMed
Google Scholar
Droll, J. A., Hayhoe, M. M., Triesch, J., & Sullivan, B. T. (2005). Task demands control acquisition and storage of visual information. Journal of Experimental Psychology. Human Perception and Performance, 31(6), 1416–1438. https://doi.org/10.1037/0096-1523.31.6.1416
Article
PubMed
Google Scholar
Endress, A. D., & Potter, M. C. (2014). Large capacity temporary visual memory. Journal of Experimental Psychology. General, 143(2), 548–565. https://doi.org/10.1037/a0033934
Article
PubMed
Google Scholar
Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202–209. https://doi.org/10.1016/j.tics.2013.03.006
Article
PubMed
Google Scholar
Fan, J. E., & Turk-Browne, N. B. (2016). Incidental biasing of attention from visual long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(6), 970–977. https://doi.org/10.1037/xlm0000209
Article
PubMed
Google Scholar
Figueroa, J. C. M., Arellano, R. A. B., & Calinisan, J. M. E. (2018). A comparative study of virtual reality and 2D display methods in visual search in real scenes. In D. N. Cassenti (Ed.), Advances in Human Factors in Simulation and Modeling (pp. 366–377). Cham: Springer International Publishing.
Chapter
Google Scholar
Fischer, C., Czoschke, S., Peters, B., Rahm, B., Kaiser, J., & Bledowski, C. (2020). Context information supports serial dependence of multiple visual objects across memory episodes. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-15874-w
Article
Google Scholar
Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, 17(5), 738–743. https://doi.org/10.1038/nn.3689
Article
PubMed
PubMed Central
Google Scholar
Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vision Research, 51(17), 1920–1931. https://doi.org/10.1016/j.visres.2011.07.002
Article
PubMed
Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.
Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.
Google Scholar
Graziano, M. S. A. (2001). Is reaching eye-centered, body-centered, hand-centered, or a combination? Reviews in the Neurosciences. https://doi.org/10.1515/REVNEURO.2001.12.2.175
Graziano, M. S. A., & Gross, C. G. (1996). Multiple pathways for processing visual space. Attention and Performance.
Google Scholar
Gross, C. G., & Graziano, M. S. A. (1995). REVIEW : Multiple Representations of Space in the Brain. The Neuroscientist, 1(1), 43–50. https://doi.org/10.1177/107385849500100107
Article
Google Scholar
Guevara Pinto, J. D., Papesh, M. H., & Hout, M. C. (2020). The detail is in the difficulty: Challenging search facilitates rich incidental object encoding. Memory and Cognition, 48(7), 1214–1233. https://doi.org/10.3758/s13421-020-01051-3
Article
PubMed
Google Scholar
Hanning, N. M., Aagten-Murphy, D., & Deubel, H. (2018). Independent selection of eye and hand targets suggests effector-specific attentional mechanisms. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27723-4
Hanning, N. M., & Deubel, H. (2018). Independent effects of eye and hand movements on visual working memory. Frontiers in Systems Neuroscience, 12. https://doi.org/10.3389/fnsys.2018.00037
Hanning, N. M., Deubel, H., & Szinte, M. (2019a). Sensitivity measures of visuospatial attention. Journal of Vision, 19(12), 1–13. https://doi.org/10.1167/19.12.17
Article
Google Scholar
Hanning, N. M., Jonikaitis, D., Deubel, H., & Szinte, M. (2016). Oculomotor selection underlies feature retention in visual working memory. Journal of Neurophysiology, 115(2), 1071–1076. https://doi.org/10.1152/jn.00927.2015
Article
PubMed
Google Scholar
Hanning, N. M., Szinte, M., & Deubel, H. (2019b). Visual attention is not limited to the oculomotor range. Proceedings of the National Academy of Sciences, 201813465. https://doi.org/10.1073/pnas.1813465116
Hansmann-Roth, S., Chetverikov, A., & Kristjánsson, Á. (2019). Representing color and orientation ensembles: Can observers learn multiple feature distributions? Journal of Vision, 19(9), 2–2. https://doi.org/10.1167/19.9.2
Article
PubMed
Google Scholar
Harman, K. L., Humphrey, G. K., & Goodale, M. A. (1999). Active manual control of object views facilitates visual recognition. Current Biology, 9(22), 1315–1318. https://doi.org/10.1016/S0960-9822(00)80053-6
Article
PubMed
Google Scholar
Hartshorne, J. K. (2008). Visual working memory capacity and proactive interference. PLoS ONE, 3(7). https://doi.org/10.1371/journal.pone.0002716
Hayhoe, M. M. (2017). Vision and Action. Annual Review of Vision Science, 3(1), 389–413. https://doi.org/10.1146/annurev-vision-102016-061437
Article
PubMed
Google Scholar
Hayhoe, M. M., & Rothkopf, C. A. (2011). Vision in the natural world. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2), 158–166. https://doi.org/10.1002/wcs.113
Article
PubMed
Google Scholar
Helbing, J., Draschkow, D., & Võ, M. L.-H. (2020). Search superiority: Goal-directed attentional allocation creates more reliable incidental identity and location memory than explicit encoding in naturalistic virtual environments. Cognition, 196, 104147. https://doi.org/10.1016/j.cognition.2019.104147
Article
PubMed
Google Scholar
Henderson, J. M., & Hayes, T. R. (2017). Meaning-based guidance of attention in scenes as revealed by meaning maps. Nature Human Behaviour, 1(10), 743–747. https://doi.org/10.1038/s41562-017-0208-0
Article
PubMed
PubMed Central
Google Scholar
Heuer, A., Crawford, J. D., & Schubö, A. (2017). Action relevance induces an attentional weighting of representations in visual working memory. Memory and Cognition, 45(3), 413–427. https://doi.org/10.3758/s13421-016-0670-3
Article
PubMed
Google Scholar
Hollingworth, A. (2004). Constructing visual representations of natural scenes: the roles of short- and long-term visual memory. Journal of Experimental Psychology. Human Perception and Performance, 30(3), 519–537. https://doi.org/10.1037/0096-1523.30.3.519
Article
PubMed
Google Scholar
Hollingworth, A. (2006). Scene and position specificity in visual memory for objects. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(1), 58–69. https://doi.org/10.1037/0278-7393.32.1.58
Article
PubMed
Google Scholar
Hollingworth, A., & Henderson, J. (2002). Accurate Visual Memory for Previously Attended Objects in Natural Scenes. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 113–136.
Google Scholar
Hout, M. C., & Goldinger, S. D. (2010). Learning in repeated visual search. Attention, Perception & Psychophysics, 72(5), 1267–1282. https://doi.org/10.3758/APP.72.5.1267
Article
Google Scholar
Hout, M. C., & Goldinger, S. D. (2012). Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency: evidence from eye movements. Journal of Experimental Psychology. Human Perception and Performance, 38(1), 90–112. https://doi.org/10.1037/a0023894
Article
PubMed
Google Scholar
Howard, C. J., Pharaon, R. G., Körner, C., Smith, A. D., & Gilchrist, I. D. (2011). Visual search in the real world: evidence for the formation of distractor representations. Perception, 40(10), 1143–1153. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22308885
Article
Google Scholar
Huestegge, L., & Adam, J. J. (2011). Oculomotor interference during manual response preparation: Evidence from the response-cueing paradigm. Attention, Perception, and Psychophysics, 73(3), 702–707. https://doi.org/10.3758/s13414-010-0051-0
Article
Google Scholar
Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576–579. https://doi.org/10.1016/j.tics.2012.10.003
Article
PubMed
PubMed Central
Google Scholar
Itti, Laurent, & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500
Article
PubMed
Google Scholar
Jackson, S. R., Newport, R., Mort, D., & Husain, M. (2005). Where the eye looks, the hand follows: Limb-dependent magnetic misreaching in optic ataxia. Current Biology, 15(1), 42–46. https://doi.org/10.1016/j.cub.2004.12.063
Article
PubMed
Google Scholar
James, K. H., Humphrey, G. K., Vilis, T., Corrie, B., Baddour, R., & Goodale, M. A. (2002). “Active” and “passive” learning of three-dimensional object structure within an immersive virtual reality environment. Behavior Research Methods, Instruments, & Computers : A Journal of the Psychonomic Society, Inc, 34(3), 383–390. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12395554
Article
Google Scholar
Jóhannesson, Ó. I., Thornton, I. M., Smith, I. J., Chetverikov, A., & Kristjánsson, Á. (2016). Visual foraging with fingers and eye gaze. I-Perception, 7(2), 1–18. https://doi.org/10.1177/2041669516637279
Article
Google Scholar
Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. Attention and Performance, 187–203. Retrieved from https://ci.nii.ac.jp/naid/20001365380
Jonikaitis, D., & Deubel, H. (2011). Independent allocation of attention to eye and hand targets in coordinated eye-hand movements. Psychological Science, 22(3), 339–347. https://doi.org/10.1177/0956797610397666
Article
PubMed
Google Scholar
Jonikaitis, D., & Moore, T. (2019). The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Current opinion in psychology. Elsevier B.V. https://doi.org/10.1016/j.copsyc.2019.01.012
Josephs, E. L. E. L., Draschkow, D., Wolfe, J. M. J. M., & Võ, M. L.-H. M. L.-H. (2016). Gist in time: Scene semantics and structure enhance recall of searched objects. Acta Psychologica, 169, 100–108. https://doi.org/10.1016/j.actpsy.2016.05.013
Article
PubMed
PubMed Central
Google Scholar
Khan, A. Z., Song, J.-H., & McPeek, R. M. (2011). The eye dominates in guiding attention during simultaneous eye and hand movements. Journal of Vision, 11(1), 9–9. https://doi.org/10.1167/11.1.9
Article
PubMed
PubMed Central
Google Scholar
Kirtley, C., & Tatler, B. W. (2015). Priorities for representation: Task settings and object interaction both influence object memory. Memory & Cognition. https://doi.org/10.3758/s13421-015-0550-2
Kit, D., Katz, L., Sullivan, B., Snyder, K., Ballard, D., & Hayhoe, M. (2014). Eye movements, visual search and scene memory, in an immersive virtual environment. PloS One, 9(4), e94362. https://doi.org/10.1371/journal.pone.0094362
Article
PubMed
PubMed Central
Google Scholar
Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227. https://doi.org/10.1007/978-94-009-3833-5_5
Article
PubMed
Google Scholar
Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010a). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology. General, 139(3), 558–578. https://doi.org/10.1037/a0019165
Article
PubMed
PubMed Central
Google Scholar
Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010b). Scene memory is more detailed than you think: the role of categories in visual long-term memory. Psychological Science, 21(11), 1551–1556. https://doi.org/10.1177/0956797610385359
Article
PubMed
PubMed Central
Google Scholar
Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research. https://doi.org/10.1016/0042-6989(94)00279-U
Kreyenmeier, P., Deubel, H., & Hanning, N. (2020). Theory of Visual Attention (TVA) in Action: Assessing Premotor Attention in Simultaneous Eye-Hand Movements. BioRxiv, 2020.01.08.898932. https://doi.org/10.1101/2020.01.08.898932
Article
Google Scholar
Kristjánsson, Á. (2011). The intriguing interactive relationship between visual atttention and saccadinc eye movements. In Oxford handbook of eye movements. https://doi.org/10.1002/0470018860.s00612
Chapter
Google Scholar
Kristjánsson, Á. (2015). Reconsidering Visual Search. I-Perception, 6(6), 204166951561467.
Kristjánsson, Á. (2016). The slopes remain the same: Reply to Wolfe (2016). I-Perception, 7(6), 2041669516673383.
Article
Google Scholar
Kristjánsson, Á., & Ásgeirsson, Á. G. (2019). Attentional priming: recent insights and current controversies. Current opinion in psychology. Elsevier B.V. https://doi.org/10.1016/j.copsyc.2018.11.013
Kristjánsson, Á., & Driver, J. (2008). Priming in visual search: Separating the effects of target repetition, distractor repetition and role-reversal. Vision Research, 48(10), 1217–1232. https://doi.org/10.1016/j.visres.2008.02.007
Article
PubMed
Google Scholar
Kristjánsson, Á., & Egeth, H. (2020). How feature integration theory integrated cognitive psychology, neurophysiology, and psychophysics. Attention, perception, and psychophysics, 82(1), 7–23. https://doi.org/10.3758/s13414-019-01803-7
Article
Google Scholar
Kristjánsson, Á., Jóhannesson, Ó. I., & Thornton, I. M. (2014). Common Attentional Constraints in Visual Foraging. PLoS ONE, 9(6), e100752. https://doi.org/10.1371/journal.pone.0100752
Article
PubMed
PubMed Central
Google Scholar
Kristjánsson, Á., Ólafsdóttir, I. M., & Kristjánsson, T. (2019). Visual foraging tasks provide new insights into the orienting of visual attention: Methodological considerations. In Neuromethods (Vol. 151, pp. 3–21). Humana Press Inc. https://doi.org/10.1007/7657_2019_21
Kristjánsson, Á., Saevarsson, S., & Driver, J. (2013). The boundary conditions of priming of visual search: From passive viewing through task-relevant working memory load. Psychonomic Bulletin and Review, 20(3), 514–521. https://doi.org/10.3758/s13423-013-0375-6
Article
PubMed
Google Scholar
Kristjánsson, Á., Wang, D. L., & Nakayama, K. (2002). The role of priming in conjunctive visual search. Cognition, 85(1), 37–52. https://doi.org/10.1016/S0010-0277(02)00074-4
Article
PubMed
Google Scholar
Kristjánsson, T., Draschkow, D., Pálsson, Á., Haraldsson, D., Jónsson, P. Ö., & Kristjánsson, Á. (2020a). Moving foraging into 3D: Feature versus conjunction-based foraging in virtual reality. Quarterly Journal of Experimental Psychology, 174702182093702. https://doi.org/10.1177/1747021820937020
Kristjánsson, T., Thornton, I. M., Chetverikov, A., & Kristjánsson, Á. (2020b). Dynamics of visual attention revealed in foraging tasks. Cognition, 194, 104032. https://doi.org/10.1016/j.cognition.2019.104032
Article
PubMed
Google Scholar
Kristjánsson, T., Thornton, I. M., & Kristjánsson, Á. (2018). Time limits during visual foraging reveal flexible working memory templates. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 827–835. https://doi.org/10.1037/xhp0000517
Article
PubMed
Google Scholar
Labar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage, 10(6), 695–704. https://doi.org/10.1006/nimg.1999.0503
Article
PubMed
Google Scholar
Lamy, D., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of Pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48(1), 30–41. https://doi.org/10.1016/j.visres.2007.10.009
Article
PubMed
Google Scholar
Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41(25–26), 3559–3565. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11718795
Leahey, T. H. (1981). The mistaken mirror: On Wundt’S and Titchener’S psychologies. Journal of the History of the Behavioral Sciences, 17(2), 273–282.
Li, C. L., Aivar, M. P., Kit, D. M., Tong, M. H., & Hayhoe, M. M. (2016). Memory and visual search in naturalistic 2D and 3D environments. Journal of Vision, 16(8), 9. https://doi.org/10.1167/16.8.9
Article
PubMed
PubMed Central
Google Scholar
Li, C. L., Aivar, M. P., Tong, M. H., & Hayhoe, M. M. (2018). Memory shapes visual search strategies in large-scale environments. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-22731-w
Article
Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–284. https://doi.org/10.1038/36846
Article
PubMed
Google Scholar
Madrid, J., Cunningham, C. A., Robbins, A., & Hout, M. C. (2019). You’re looking for what? Comparing search for familiar, nameable objects to search for unfamiliar, novel objects. Visual Cognition, 27(1), 8–20. https://doi.org/10.1080/13506285.2019.1577318
Article
Google Scholar
Makin, T. R., Holmes, N. P., & Zohary, E. (2007). Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. Journal of Neuroscience, 27(4), 731–740. https://doi.org/10.1523/JNEUROSCI.3653-06.2007
Article
PubMed
Google Scholar
Malcolm, G. L., Groen, I. I. A., & Baker, C. I. (2016). Making sense of real-world scenes. Trends in Cognitive Sciences, 20(11), 843–856. https://doi.org/10.1016/j.tics.2016.09.003
Article
PubMed
PubMed Central
Google Scholar
Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672. https://doi.org/10.3758/BF03209251
Article
Google Scholar
Manassi, M., Kristjánsson, Á., & Whitney, D. (2019). Serial dependence in a simulated clinical visual search task. Scientific reports, 9(1), 1–10
Manassi, M., Liberman, A., Chaney, W., & Whitney, D. (2017). The perceived stability of scenes: Serial dependence in ensemble representations. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-02201-5
Article
Google Scholar
Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences. Elsevier Ltd. https://doi.org/10.1016/j.tics.2003.12.008
Maxcey-Richard, A. M., & Hollingworth, A. (2013). The strategic retention of task-relevant objects in visual working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39(3), 760–772. https://doi.org/10.1037/a0029496
Article
PubMed
Google Scholar
Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences. Elsevier Current Trends. https://doi.org/10.1016/0166-2236(83)90190-X
Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during saccade preparation: Independence and coupling between attention and movement planning. Journal of Vision, 7(14), 8–8. https://doi.org/10.1167/7.14.8
Article
PubMed
Google Scholar
Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing Information during Working Memory: Beyond Sustained Internal Attention. Trends in Cognitive Sciences, 21(6), 449–461. https://doi.org/10.1016/J.TICS.2017.03.010
Article
PubMed
PubMed Central
Google Scholar
Nakayama, K. James J. (1994). Gibson-An Appreciation. Psychological Review, 101(2), 329–335. https://doi.org/10.1037/0033-295x.101.2.329
Article
PubMed
Google Scholar
Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 1631–1647. https://doi.org/10.1016/0042-6989(89)90144-2
Article
PubMed
Google Scholar
Neisser, U. (1963). Decision-Time without Reaction-Time: Experiments in Visual Scanning. The American Journal of Psychology, 76(3), 376.
Article
Google Scholar
Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.
Google Scholar
Nissens, T., & Fiehler, K. (2018). Saccades and reaches curve away from the other effector’s target in simultaneous eye and hand movements. Journal of Neurophysiology, 119(1), 118–123. https://doi.org/10.1152/jn.00618.2017
Article
PubMed
Google Scholar
Nobre, A. C. (Kia), & Stokes, M. G. (2019). Premembering Experience: A Hierarchy of Time-Scales for Proactive Attention. Neuron, 104(1), 132–146. https://doi.org/10.1016/j.neuron.2019.08.030
Ohl, S., & Rolfs, M. (2017). Saccadic eye movements impose a natural bottleneck on visual short-term memory. Journal of Experimental Psychology: Learning Memory and Cognition, 43(5), 736–748. https://doi.org/10.1037/xlm0000338
Article
Google Scholar
Ólafsdóttir, I. M., Gestsdóttir, S., & Kristjánsson, Á. (2019). Visual foraging and executive functions: A developmental perspective. Acta Psychologica, 193, 203–213. https://doi.org/10.1016/j.actpsy.2019.01.005
Article
PubMed
Google Scholar
Ólafsdóttir, I. M., Gestsdóttir, S., & Kristjánsson, Á. (2020). Age differences in foraging and executive functions: A cross-sectional study. Journal of Experimental Child Psychology, 198, 104910. https://doi.org/10.1016/j.jecp.2020.104910
Article
PubMed
Google Scholar
Olejarczyk, J. H., Luke, S. G., & Henderson, J. M. (2014). Incidental memory for parts of scenes from eye movements. Visual Cognition, 22(7), 975–995. https://doi.org/10.1080/13506285.2014.941433
Article
Google Scholar
Oliva, A. (2005). Gist of the Scene. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.), Neurobiology of attention (pp. 251–256).
Chapter
Google Scholar
Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences. Trends Cogn Sci. https://doi.org/10.1016/j.tics.2011.05.004
Olk, B., Dinu, A., Zielinski, D. J., & Kopper, R. (2018). Measuring visual search and distraction in immersive virtual reality. Royal Society Open Science, 5(5), 1–15. https://doi.org/10.1098/rsos.172331
Article
Google Scholar
Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of Free Choice Reveals the Cost of Having to Search for More Than One Object. Psychological Science, 28(8), 1137–1147. https://doi.org/10.1177/0956797617705667
Article
PubMed
PubMed Central
Google Scholar
Pascucci, D., Mancuso, G., Santandrea, E., Libera, C. Della, Plomp, G., & Chelazzi, L. (2019). Laws of concatenated perception: Vision goes for novelty, decisions for perseverance. PLoS Biology, 17(3), e3000144. https://doi.org/10.1371/journal.pbio.3000144
Article
PubMed
PubMed Central
Google Scholar
Patai, E. Z., Buckley, A., & Nobre, A. C. (2013). Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals? PLoS ONE, 8(6), e65601. https://doi.org/10.1371/journal.pone.0065601
Article
PubMed
PubMed Central
Google Scholar
Perry, C. J., & Fallah, M. (2017). Effector-based attention systems. Annals of the New York Academy of Sciences, 1396(1), 56–69. https://doi.org/10.1111/nyas.13354
Article
PubMed
Google Scholar
Perry, C. J., Sergio, L. E., Crawford, J. D., & Fallah, M. (2015). Hand placement near the visual stimulus improves orientation selectivity in V2 neurons. Journal of Neurophysiology, 113(7), 2859–2870. https://doi.org/10.1152/jn.00919.2013
Article
PubMed
PubMed Central
Google Scholar
Pinto, G. J. D., Papesh, M. H., & Hout, M.C. (2020). The detail is in the difficulty: Challenging search facilitates rich incidental object encoding. Memory & Cognition, 48, 1214–1233. https://doi.org/10.3758/s13421-020-01051-3
Posner, M. I., Nissen, M. J., & Ogden, W. C. (1978). Attended and unattended processing modes: the role of set for spatial location. Modes of Perceiving and Processing Information. https://doi.org/10.1103/PhysRevLett.107.057601
Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179–197. https://doi.org/10.1163/156856888X00122
Article
PubMed
Google Scholar
Rafiei, M., Hansmann-Roth, S., Whitney, D., Kristjánsson, Á., & Chetverikov, A. (2020). Optimizing perception: Attended and ignored stimuli create opposing perceptual biases. Attention, Perception, and Psychophysics, 1–10. https://doi.org/10.3758/s13414-020-02030-1
Reed, C. L., Grubb, J. D., & Steele, C. (2006). Hands up: Attentional priorization of space near the hand. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 166–177. https://doi.org/10.1037/0096-1523.32.1.166
Article
PubMed
Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1 PART 1), 31–40. https://doi.org/10.1016/0028-3932(87)90041-8
Article
PubMed
Google Scholar
Robbins, A., & Hout, M. C. (2019). Scene Priming Provides Clues About Target Appearance That Improve Attentional Guidance During Categorical Search. Journal of Experimental Psychology: Human Perception and Performance. https://doi.org/10.1037/xhp0000707
Robinson, M. M., Benjamin, A. S., & Irwin, D. E. (2020). Is there a K in capacity? Assessing the structure of visual short-term memory. Cognitive Psychology, 121, 101305. https://doi.org/10.1016/j.cogpsych.2020.101305
Article
PubMed
Google Scholar
Rolfs, M., Lawrence, B. M., & Carrasco, M. (2013). Reach preparation enhances visual performance and appearance. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), 20130057. https://doi.org/10.1098/rstb.2013.0057
Article
Google Scholar
Sauter, M., Stefani, M., & Mack, W. (2020). Towards Interactive Search: Investigating Visual Search in a Novel Real-World Paradigm. Brain Sciences, 10(12), 927 https://doi.org/10.3390/brainsci10120927
Article
PubMed Central
Google Scholar
Schütz-Bosbach, S., & Prinz, W. (2007, August). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences https://doi.org/10.1016/j.tics.2007.06.005
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Simons, D. J., & Levin, D. T. (1997, October 1). Change blindness. Trends in Cognitive Sciences. Elsevier Ltd. https://doi.org/10.1016/S1364-6613(97)01080-2
Simons, D. J., & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Sciences, 9(1), 16–20. https://doi.org/10.1016/j.tics.2004.11.006
Article
PubMed
Google Scholar
Song, J. H., & McPeek, R. M. (2009). Eye-hand coordination during target selection in a pop-out visual search. Journal of Neurophysiology, 102(5), 2681–2692. https://doi.org/10.1152/jn.91352.2008
Article
PubMed
PubMed Central
Google Scholar
Standing, L. (1973). Learning 10,000 pictures. The Quarterly Journal of Experimental Psychology, 25(2), 207–222. https://doi.org/10.1080/14640747308400340
Article
PubMed
Google Scholar
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.
Article
Google Scholar
Stokes, M. G., Atherton, K., Patai, E. Z., & Nobre, A. C. (2012). Long-term memory prepares neural activity for perception. Proceedings of the National Academy of Sciences of the United States of America, 109(6), E360-7. https://doi.org/10.1073/pnas.1108555108
Article
PubMed
Google Scholar
Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. (2006). Orienting attention based on long-term memory experience. Neuron, 49(6), 905–916. https://doi.org/10.1016/j.neuron.2006.01.021
Article
PubMed
Google Scholar
Tagu, J., & Kristjánsson, Á. (2020). Dynamics of attentional and oculomotor orienting in visual foraging tasks. Quarterly Journal of Experimental Psychology (2006), 1747021820919351. https://doi.org/10.1177/1747021820919351
Article
Google Scholar
Tanrikulu, Ö. D., Chetverikov, A., & Kristjánsson, Á. (2020). Encoding perceptual ensembles during visual search in peripheral vision. Journal of Vision, 20(8), 20. https://doi.org/10.1167/jov.20.8.20
Article
PubMed
PubMed Central
Google Scholar
Tatler, B. W. (2014). Eye movements from laboratory to life. In M. Horsley, M. Eliot, B. A. Knight, & R. Reilly (Eds.), Current trends in eye tracking research (pp. 17–35). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-02868-2
Chapter
Google Scholar
Tatler, B. W., Gilchrist, I. D., & Land, M. F. (2005). Visual memory for objects in natural scenes: from fixations to object files. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 58(5), 931–960. https://doi.org/10.1080/02724980443000430
Article
PubMed
Google Scholar
Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: reinterpreting salience. Journal of Vision, 11(5), 5. https://doi.org/10.1167/11.5.5
Article
PubMed
PubMed Central
Google Scholar
Tatler, B. W., Hirose, Y., Finnegan, S. K., Pievilainen, R., Kirtley, C., & Kennedy, A. (2013). Priorities for selection and representation in natural tasks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1628)20130066 https://doi.org/10.1098/rstb.2013.0066
Article
PubMed
PubMed Central
Google Scholar
Tatler, B. W., & Land, M. F. (2011). Vision and the representation of the surroundings in spatial memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1564), 596–610. https://doi.org/10.1098/rstb.2010.0188
Article
PubMed
PubMed Central
Google Scholar
Tatler, B. W., & Tatler, S. L. (2013). The influence of instructions on object memory in a real-world setting. Journal of Vision, 13(2), 5. https://doi.org/10.1167/13.2.5
Article
PubMed
Google Scholar
Theeuwes, J. (2013). Feature-based attention: It is all bottom-up priming. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628). https://doi.org/10.1098/rstb.2013.0055
Thornton, Ian M., de’Sperati, C., & Kristjánsson, Á. (2019). The influence of selection modality, display dynamics and error feedback on patterns of human foraging. Visual Cognition, 27(5–8), 626–648. https://doi.org/10.1080/13506285.2019.1658001
Article
Google Scholar
Thornton, I. M., Nguyen, T. T., & Kristjánsson, Á. (2020). Foraging tempo: Human run patterns in multiple-target search are constrained by the rate of successive responses. Quarterly Journal of Experimental Psychology. https://doi.org/10.1177/1747021820961640
Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychological Review, 113(4), 766–786. https://doi.org/10.1037/0033-295X.113.4.766
Article
PubMed
Google Scholar
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology. https://doi.org/10.1016/0010-0285(80)90005-5
Trewartha, K. M., Case, S., & Flanagan, J. R. (2015). Integrating actions into object location memory: A benefit for active versus passive reaching movements. Behavioural Brain Research, 279, 234–239. https://doi.org/10.1016/j.bbr.2014.11.043
Article
PubMed
Google Scholar
Triesch, J., Ballard, D. H., Hayhoe, M. M., & Sullivan, B. T. (2003). What you see is what you need. Journal of Vision, 3(1), 86–94. https://doi.org/10.1167/3.1.9
Article
PubMed
Google Scholar
Utochkin, I. S., & Wolfe, J. M. (2018). Visual search for changes in scenes creates long-term, incidental memory traces. Attention, Perception, & Psychophysics, 80(4), 829–843. https://doi.org/10.3758/s13414-018-1486-y
Article
Google Scholar
Van der Stigchel, S., & de Vries, J. P. (2015). There is no attentional global effect: Attentional shifts are independent of the saccade endpoint. Journal of Vision, 15(15). https://doi.org/10.1167/15.15.17
van Ede, F. (2020). Visual working memory and action: Functional links and bi-directional influences. Visual Cognition. https://doi.org/10.1080/13506285.2020.1759744
van Moorselaar, D., Gunseli, E., Theeuwes, J., & Olivers, C. N. L. (2014). The time course of protecting a visual memory representation from perceptual interference. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.01053
Võ, M. L.-H., Boettcher, S. E. P., & Draschkow, D. (2019). Reading scenes: How scene grammar guides attention and aids perception in real-world environments. Current Opinion in Psychology. https://doi.org/10.1016/j.copsyc.2019.03.009
Võ, M. L.-H., & Henderson, J. M. (2010). The time course of initial scene processing for eye movement guidance in natural scene search. Journal of Vision, 10(3), 14.1-13. https://doi.org/10.1167/10.3.14
Article
Google Scholar
Võ, M. L.-H., & Wolfe, J. M. (2012). When does repeated search in scenes involve memory? Looking at versus looking for objects in scenes. Journal of Experimental Psychology. Human Perception and Performance, 38(1), 23–41. https://doi.org/10.1037/a0024147
Article
PubMed
Google Scholar
Võ, M. L.-H., & Wolfe, J. M. (2015). The role of memory for visual search in scenes. Annals of the New York Academy of Sciences, 1339, 72–81. https://doi.org/10.1111/nyas.12667
Article
PubMed Central
Google Scholar
Wang, D., Kristjansson, A., & Nakayama, K. (2005). Efficient visual search without top-down or bottom-up guidance. Perception and Psychophysics. Psychonomic Society Inc. https://doi.org/10.3758/BF03206488
Williams, C. C. (2010). Incidental and intentional visual memory: What memories are and are not affected by encoding tasks? Visual Cognition, 18(9), 1348–1367. https://doi.org/10.1080/13506285.2010.486280
Article
Google Scholar
Williams, C. C., Henderson, J. M., & Zacks, R. T. (2005). Incidental visual memory for targets and distractors in visual search. Perception & Psychophysics, 67(5), 816–827. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1751468&tool=pmcentrez&rendertype=abstract
Article
Google Scholar
Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238.
Article
Google Scholar
Wolfe, J. M. (2007). Guided Search 4.0: Current Progress with a model of visual search, 99–119. Retrieved from http://www.citeulike.org/user/mthomure/article/6719740
Wolfe, J. M. (2012). Saved by a log: how do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698–703. https://doi.org/10.1177/0956797612443968
Article
PubMed
PubMed Central
Google Scholar
Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in human visual search. Journal of Vision, 13(3), 10–10. https://doi.org/10.1167/13.3.10
Article
PubMed
PubMed Central
Google Scholar
Wolfe, J. M. (2016). Visual search revived: the slopes are not that slippery: A reply to Kristjansson (2015). I-Perception, 7(3), 2041669516643244.
Article
Google Scholar
Wolfe, J. M., Cain, M. S., & Aizenman, A. M. (2019). Guidance and selection history in hybrid foraging visual search. Attention, Perception, and Psychophysics, 81(3), 637–653. https://doi.org/10.3758/s13414-018-01649-5
Article
Google Scholar
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews. Neuroscience, 5(6), 495–501. https://doi.org/10.1038/nrn1411
Article
PubMed
Google Scholar
Wolfe, J. M., Võ, M. L.-H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 15(2), 77–84. https://doi.org/10.1016/j.tics.2010.12.001
Article
PubMed
PubMed Central
Google Scholar
Wollenberg, L., Deubel, H., & Szinte, M. (2018). Visual attention is not deployed at the endpoint of averaging saccades. PLOS Biology, 16(6), e2006548. https://doi.org/10.1371/journal.pbio.2006548
Article
PubMed
PubMed Central
Google Scholar
Zelinsky, G. J., & Bisley, J. W. (2015). The what, where, and why of priority maps and their interactions with visual working memory. Annals of the New York Academy of Sciences, 1339(1), 154–164. https://doi.org/10.1111/nyas.12606
Article
PubMed
PubMed Central
Google Scholar
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. https://doi.org/10.1038/nature06860
Article
PubMed
PubMed Central
Google Scholar