Annac, E., Pointner, M., Khader, P. H., Müller, H. J., Zang, X., & Geyer, T. (2019). Recognition of incidentally learned visual search arrays is supported by fixational eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi:https://doi.org/10.1037/xlm0000702
Assumpção, L., Shi, Z., Zang, X., Müller, H. J., & Geyer, T. (2015). Contextual cueing: implicit memory of tactile context facilitates tactile search. Attention, Perception & Psychophysics, 77(4), 1212–1222. doi:https://doi.org/10.3758/s13414-015-0848-y
Article
Google Scholar
Assumpção, L., Shi, Z., Zang, X., Müller, H. J., & Geyer, T. (2018). Contextual cueing of tactile search is coded in an anatomical reference frame. Journal of Experimental Psychology Human Perception and Performance, 44(4), 566–577. doi:https://doi.org/10.1037/xhp0000478
Article
PubMed
Google Scholar
Azañón, E., & Longo, M. R. (2019). Tactile Perception: Beyond the Somatotopy of the Somatosensory Cortex. Current Biology, 29, R322–R324. doi:https://doi.org/10.1016/j.cub.2019.03.037
Article
PubMed
Google Scholar
Azañón, E., & Soto-Faraco, S. (2008). Changing reference frames during the encoding of tactile events. Current Biology: CB, 18(14), 1044–1049. doi:https://doi.org/10.1016/j.cub.2008.06.045
Article
PubMed
Google Scholar
Azañón, E., Stenner, M.-P., Cardini, F., & Haggard, P. (2015). Dynamic tuning of tactile localization to body posture. Current Biology: CB, 25(4), 512–517. doi:https://doi.org/10.1016/j.cub.2014.12.038
Article
PubMed
Google Scholar
Badde, S., & Heed, T. (2016). Towards explaining spatial touch perception: Weighted integration of multiple location codes. Cognitive Neuropsychology, 33(1-2), 26–47. doi:https://doi.org/10.1080/02643294.2016.1168791
Article
PubMed
PubMed Central
Google Scholar
Badde, S., Röder, B., & Heed, T. (2014). Multiple spatial representations determine touch localization on the fingers. Journal of Experimental Psychology Human Perception and Performance, 40(2), 784–801. doi:https://doi.org/10.1037/a0034690
Article
PubMed
Google Scholar
Badde, S., Röder, B., & Heed, T. (2015). Flexibly weighted integration of tactile reference frames. Neuropsychologia, 70, 367–374. doi:https://doi.org/10.1016/j.neuropsychologia.2014.10.001
Article
PubMed
Google Scholar
Badde, S., Röder, B., & Heed, T. (2019). Feeling a touch to the hand on the foot. Current Biology: CB, 29(9), 1491–1497.
Article
Google Scholar
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.
Article
Google Scholar
Brandes, J., & Heed, T. (2015). Reach Trajectories Characterize Tactile Localization for Sensorimotor Decision Making. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(40), 13648–13658. doi:https://doi.org/10.1523/JNEUROSCI.1873-14.2015
Article
Google Scholar
Buchholz, V. N., Jensen, O., & Medendorp, W. P. (2011). Multiple Reference Frames in Cortical Oscillatory Activity during Tactile Remapping for Saccades. Journal of Neuroscience. doi:https://doi.org/10.1523/jneurosci.3404-11.2011
Buchholz, V. N., Jensen, O., & Medendorp, W. P. (2013). Parietal Oscillations Code Nonvisual Reach Targets Relative to Gaze and Body. Journal of Neuroscience. doi:https://doi.org/10.1523/jneurosci.3208-12.2013
Chaumon, M., Drouet, V., & Tallon-Baudry, C. (2008). Unconscious associative memory affects visual processing before 100 ms. Journal of Vision, 8(3), 10.1–10. doi:https://doi.org/10.1167/8.3.10
Article
Google Scholar
Chaumon, M., Schwartz, D., & Tallon-Baudry, C. (2009). Unconscious learning versus visual perception: dissociable roles for gamma oscillations revealed in MEG. Journal of Cognitive Neuroscience, 21(12), 2287–2299. doi:https://doi.org/10.1162/jocn.2008.21155
Article
PubMed
Google Scholar
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. doi:https://doi.org/10.1006/cogp.1998.0681
Article
PubMed
Google Scholar
Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360–365. doi:https://doi.org/10.1111/1467-9280.00168
Article
Google Scholar
Driver, J., & Spence, C. (1998). crossmodal links in spatial attention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1319–1331. doi:https://doi.org/10.1098/rstb.1998.0286
Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power analysis program. Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society, Inc, 28(1), 1–11. doi:https://doi.org/10.3758/BF03203630
Gallace, A., & Spence, C. (2014). In touch with the future: The sense of touch from cognitive neuroscience to virtual reality. OUP Oxford.
Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & psychophysics, 67(7), 1252-1268.
Article
Google Scholar
Geyer, T., Baumgartner, F., Müller, H. J., & Pollmann, S. (2012). Medial temporal lobe-dependent repetition suppression and enhancement due to implicit vs. explicit processing of individual repeated search displays. Frontiers in Human Neuroscience. doi:https://doi.org/10.3389/fnhum.2012.00272
Geyer, T., Shi, Z., & Müller, H. J. (2010a). Contextual cueing in multiconjunction visual search is dependent on color- and configuration-based intertrial contingencies. Journal of Experimental Psychology Human Perception and Performance, 36(3), 515–532. doi:https://doi.org/10.1037/a0017448
Article
PubMed
Google Scholar
Geyer, T., Zehetleitner, M., & Müller, H. J. (2010b). Contextual cueing of pop-out visual search: when context guides the deployment of attention. Journal of Vision, 10(5), 20. doi:https://doi.org/10.1167/10.5.20
Article
PubMed
Google Scholar
Goujon, A., Didierjean, A., & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524–533. doi:https://doi.org/10.1016/j.tics.2015.07.009
Article
PubMed
Google Scholar
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.
Google Scholar
Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: auditory encoding of visual temporal sequences. Psychological Science, 16(3), 228–235. doi:https://doi.org/10.1111/j.0956-7976.2005.00808.x
Article
PubMed
PubMed Central
Google Scholar
Heed, T., & Röder, B. (2010). Common anatomical and external coding for hands and feet in tactile attention: evidence from event-related potentials. Journal of Cognitive Neuroscience, 22(1), 184–202. doi:https://doi.org/10.1162/jocn.2008.21168
Article
PubMed
Google Scholar
Kennett, S., Spence, C., & Driver, J. (2002). Visuo-tactile links in covert exogenous spatial attention remap across changes in unseen hand posture. Perception & Psychophysics, 64(7), 1083–1094.
Article
Google Scholar
Kuroki, S., Watanabe, J., Kawakami, N., Tachi, S., & Nishida, S. (2010). Somatotopic dominance in tactile temporal processing. Experimental Brain Research, 203, 51–62. doi:https://doi.org/10.1007/s00221-010-2212-8
Article
PubMed
Google Scholar
Lederman, S. J., Klatzky, R. L., Chataway, C., & Summers, C. D. (1990). Visual mediation and the haptic recognition of two-dimensional pictures of common objects. Perception & Psychophysics, 47(1), 54–64.
Article
Google Scholar
Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J., & Zehetleitner, M. (2016). Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology. Human Perception and Performance, 42(6), 821–836. doi:https://doi.org/10.1037/xhp0000156
Article
PubMed
Google Scholar
Medina, J., McCloskey, M., Coslett, H. B., & Rapp, B. (2014). Somatotopic representation of location: evidence from the Simon effect. Journal of Experimental Psychology. Human Perception and Performance, 40(6), 2131–2142. doi:https://doi.org/10.1037/a0037975
Article
PubMed
Google Scholar
Nabeta, T., Ono, F., & Kawahara, J.-I. (2003). Transfer of Spatial Context from Visual to Haptic Search. Perception. doi:https://doi.org/10.1068/p5135
Overvliet, K. E., Azañón, E., & Soto-Faraco, S. (2011). Somatosensory saccades reveal the timing of tactile spatial remapping. Neuropsychologia, 49(11), 3046–3052. doi:https://doi.org/10.1016/j.neuropsychologia.2011.07.005
Article
PubMed
Google Scholar
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437–442. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9176953
Article
Google Scholar
Preston, A. R., & Gabrieli, J. D. E. (2008). Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cerebral Cortex, 18(9), 2192–2207. doi:https://doi.org/10.1093/cercor/bhm245
Article
PubMed
Google Scholar
Schicke, T., & Röder, B. (2006). Spatial remapping of touch: confusion of perceived stimulus order across hand and foot. Proceedings of the National Academy of Sciences of the United States of America, 103(31), 11808–11813. doi:https://doi.org/10.1073/pnas.0601486103
Article
PubMed
PubMed Central
Google Scholar
Schubert, J. T. W., Buchholz, V. N., Föcker, J., Engel, A. K., Röder, B., & Heed, T. (2015). Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention. NeuroImage, 117, 417–428. doi:https://doi.org/10.1016/j.neuroimage.2015.05.068
Article
PubMed
Google Scholar
Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in Cognitive Sciences, 12(11), 411–417. doi:https://doi.org/10.1016/j.tics.2008.07.006
Article
PubMed
Google Scholar
Shi, Z., Zang, X., Jia, L., Geyer, T., & Müller, H. J. (2013). Transfer of contextual cueing in full-icon display remapping. Journal of Vision. doi:https://doi.org/10.1167/13.3.2
Sisk, C. A., Remington, R. W., & Jiang, Y. V. (2019). Mechanisms of contextual cueing: A tutorial review. Manuscript under revision at Attention, Perception, & Psychophysics.
Spence, C., & Driver, J. (Eds.). (2004). crossmodal space and crossmodal attention. Oxford University Press.
Tomassini, A., Gori, M., Burr, D., Sandini, G., & Morrone, M. C. (2012). Active movement restores veridical event-timing after tactile adaptation. Journal of Neurophysiology, 108(8), 2092–2100. doi:https://doi.org/10.1152/jn.00238.2012
Article
PubMed
Google Scholar
Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102. doi:https://doi.org/10.3758/s13423-015-0892-6
Article
Google Scholar
Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88(3), 638-667. https://doi.org/10.1037/0033-2909.88.3.638
Article
Google Scholar
Wesslein, A.-K., Spence, C., & Frings, C. (2014). Vision affects tactile target and distractor processing even when space is task-irrelevant. Frontiers in Psychology, 5, 84. doi:https://doi.org/10.3389/fpsyg.2014.00084
Article
PubMed
PubMed Central
Google Scholar
Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1, 0058. doi:https://doi.org/10.1038/s41562-017-0058
Article
Google Scholar
Wolfe, J. M., O’Neill, P., & Bennett, S. C. (1998). Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception & Psychophysics, 60(1), 140–156. doi:https://doi.org/10.3758/bf03211924
Article
Google Scholar
Zellin, M., von Mühlenen, A., Müller, H. J., & Conci, M. (2014). Long-term adaptation to change in implicit contextual learning. Psychonomic Bulletin & Review, 21(4), 1073–1079. doi:https://doi.org/10.3758/s13423-013-0568-z
Article
Google Scholar
Zinchenko, A., Conci, M., Müller, H. J., & Geyer, T. (2018). Predictive visual search: Role of environmental regularities in the learning of context cues. Attention, Perception & Psychophysics, 80(5), 1096–1109. doi:https://doi.org/10.3758/s13414-018-1500-4
Article
Google Scholar