Advertisement

Attention, Perception, & Psychophysics

, Volume 76, Issue 6, pp 1577–1589 | Cite as

Setting semantics: conceptual set can determine the physical properties that capture attention

  • Stephanie C. Goodhew
  • William Kendall
  • Susanne Ferber
  • Jay Pratt
Article

Abstract

The ability of a stimulus to capture visuospatial attention depends on the interplay between its bottom-up saliency and its relationship to an observer’s top-down control set, such that stimuli capture attention if they match the predefined properties that distinguish a searched-for target from distractors (Folk, Remington, & Johnston, Journal of Experimental Psychology: Human Perception & Performance, 18, 1030–1044 1992). Despite decades of research on this phenomenon, however, the vast majority has focused exclusively on matches based on low-level physical properties. Yet if contingent capture is indeed a “top-down” influence on attention, then semantic content should be accessible and able to determine which physical features capture attention. Here we tested this prediction by examining whether a semantically defined target could create a control set for particular features. To do this, we had participants search to identify a target that was differentiated from distractors by its meaning (e.g., the word “red” among color words all written in black). Before the target array, a cue was presented, and it was varied whether the cue appeared in the physical color implied by the target word. Across three experiments, we found that cues that embodied the meaning of the word produced greater cuing than cues that did not. This suggests that top-down control sets activate content that is semantically associated with the target-defining property, and this content in turn has the ability to exogenously orient attention.

Keywords

Spatial attention Contingent capture Semantics Cognitive control Embodied cognition Attentional capture Attention: selective Automaticity 

Notes

Author Note

This research was supported by an Ontario Government Postdoctoral Fellowship and an Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA DE140101734) awarded to S.C.G., Natural Sciences and Engineering Research Council (NSERC) discovery grants awarded to S.F. (261203-13) and J.P. (194537), and an Early Researcher Award and Canadian Institutes of Health Research (CIHR) grant awarded to S.F. (106436). The authors thank Nicole Fogel and Samuel Chen for assistance with the data collection.

References

  1. Al-Aidroos, N., Harrison, S., & Pratt, J. (2010). Attentional control settings prevent abrupt onsets from capturing visual spatial attention. The Quarterly Journal of Experimental Psychology, 63, 31–41. doi: 10.1080/17470210903150738 PubMedCrossRefGoogle Scholar
  2. Ansorge, U., & Heumann, M. (2003). Top-down contingencies in peripheral cuing: The roles of color and location. Journal of Experimental Psychology: Human Perception and Performance, 29, 937–948. doi: 10.1037/0096-1523.29.5.937 PubMedGoogle Scholar
  3. Bacon, W., & Egeth, H. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496. doi: 10.3758/BF03205306 CrossRefGoogle Scholar
  4. Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in object recognition. Journal of Cognitive Neuroscience, 15, 600–609. doi: 10.1162/089892903321662976 PubMedCrossRefGoogle Scholar
  5. Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmidt, A. M., Dale, A. M., … Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103, 449–454. doi: 10.1073/pnas.0507062103
  6. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660. doi: 10.1017/S0140525X99002149 PubMedGoogle Scholar
  7. Barsalou, L. W. (2005). Continuity of the conceptual system across species. Trends in Cognitive Sciences, 9, 309–311. doi: 10.1016/j.tics.2005.05.003 PubMedCrossRefGoogle Scholar
  8. Broadbent, D. E. (1958). Perception and communication. Elmsford: Pergamon Press.CrossRefGoogle Scholar
  9. Burnham, B. R. (2007). Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14, 392–422. doi: 10.3758/BF03194082 CrossRefGoogle Scholar
  10. Chasteen, A. L., Burdzy, D. C., & Pratt, J. (2010). Thinking of God moves attention. Neuropsychologia, 48, 627–630. doi: 10.1016/j.neuropsychologia.2009.09.029 PubMedCrossRefGoogle Scholar
  11. Connell, L. (2007). Representing object colour in language comprehension. Cognition, 102, 476–485. doi: 10.1016/j.cognition.2006.02.009 PubMedCrossRefGoogle Scholar
  12. Connell, L., & Lynott, D. (2009). Is a bear white in the woods? Parallel representation of implied object color during language comprehension. Psychonomic Bulletin & Review, 16, 573–577. doi: 10.3758/PBR.16.3.573 CrossRefGoogle Scholar
  13. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/annurev.ne.18.030195.001205 PubMedCrossRefGoogle Scholar
  14. Di Lollo, V. (2010). Iterative reentrant processing: A conceptual framework for perception and cognition (the blinding problem? No worries, mate). In V. Coltheart (Ed.), Tutorials in visual cognition (pp. 9–42). New York: Psychology Press.Google Scholar
  15. Duncan, J., & Humphreys, G. K. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi: 10.1037/0033-295X.96.3.433 PubMedCrossRefGoogle Scholar
  16. Dux, P. E., Visser, T. A. W., Goodhew, S. C., & Lipp, O. V. (2010). Delayed re-entrant processing impairs visual awareness: An object substitution masking study. Psychological Science, 21, 1242–1247. doi: 10.1177/0956797610379866 PubMedCrossRefGoogle Scholar
  17. Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant feature singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858. doi: 10.1037/0096-1523.24.3.847 PubMedGoogle Scholar
  18. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18, 1030–1044. doi: 10.1037/0096-1523.18.4.1030 Google Scholar
  19. Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20, 317–329. doi: 10.1037/0096-1523.20.2.317 PubMedGoogle Scholar
  20. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479. doi: 10.1080/02643290442000310 PubMedCrossRefGoogle Scholar
  21. Gibson, B. S., & Kelsey, E. M. (1998). Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. Journal of Experimental Psychology: Human Perception and Performance, 24, 399–706. doi: 10.1037/0096-1523.24.3.699 Google Scholar
  22. Goodhew, S. C., McGaw, B., & Kidd, E. (2014). Why is the sunny side always up? Explaining the spatial mapping of concepts by language use. Psychonomic Bulletin & Review. doi: 10.3758/s13423-014-0593-6 Google Scholar
  23. Gozli, D. G., Chasteen, A. L., & Pratt, J. (2013a). The cost and benefit of implicit conceptual cues for visual attention. Journal of Experimental Psychology: General. doi: 10.1037/a0030362 Google Scholar
  24. Gozli, D. G., Goodhew, S. C., Moskovitz, J. B., & Pratt, J. (2013b). Ideomotor perception modulates visuospatial cueing. Psychological Research, 77, 528–539. doi: 10.1007/s00426-012-0461-9 PubMedCrossRefGoogle Scholar
  25. Huettig, F., & Altmann, G. T. M. (2011). Looking at anything that is green when hearing “frog”: How object surface colour and stored object colour knowledge influence language-mediated overt attention. The Quarterly Journal of Experimental Psychology, 64, 122–145. doi: 10.1080/17470218.2010.481474 PubMedCrossRefGoogle Scholar
  26. Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43, 346–354. doi: 10.3758/BF03208805 CrossRefGoogle Scholar
  27. Kahneman, D. (1973). Attention and effort. New Jersey: Prentice-Hall.Google Scholar
  28. Kastner, S., & Pinsk, M. A. (2004). Visual attention as a multilevel selection process. Cognitive, Affective, & Behavioral Neuroscience, 4, 483–500. doi: 10.3758/CABN.4.4.483 CrossRefGoogle Scholar
  29. Kveraga, K., Boshyan, J., & Bar, M. (2007). Magnocellular projections as the trigger of top-down facilitation in recognition. Journal of Neuroscience, 27, 13232–13240. doi: 10.1523/jneurosci.3481-07.2007 PubMedCrossRefGoogle Scholar
  30. Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579. doi: 10.1016/S0166-2236(00)01657-X PubMedCrossRefGoogle Scholar
  31. Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up: Associations between affect and vertical position. Psychological Science, 15, 243–247. doi: 10.1111/j.0956-7976.2004.00659.x PubMedCrossRefGoogle Scholar
  32. Most, S. B., Simons, D. J., Scholl, B. J., Jimenez, R., Clifford, E., & Chabris, C. F. (2001). How not to be seen: The contribution of similarity and selective ignoring to sustained inattentional blindness. Psychological Science, 12, 9–17. doi: 10.1111/1467-9280.00303 PubMedCrossRefGoogle Scholar
  33. Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292, 510–512. doi: 10.1126/science.1057099 PubMedCrossRefGoogle Scholar
  34. Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 3–25. doi: 10.1080/00335558008248231 PubMedCrossRefGoogle Scholar
  35. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. Bouwhuis (Eds.), Attention & performance X (pp. 531–556). Hillsdale: Erlbaum.Google Scholar
  36. Richter, T., & Zwaan, R. A. (2009). Processing of color words activates color representations. Cognition, 111, 383–389. doi: 10.1016/j.cognition.2009.02.011 PubMedCrossRefGoogle Scholar
  37. Sillito, A. M., Cudeiro, J., & Jones, H. E. (2006). Always returning: Feedback and sensory processing in visual cortex and thalamus. Trends in Neurosciences, 29, 307–316. doi: 10.1016/j.tins.2006.05.001 PubMedCrossRefGoogle Scholar
  38. Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45, 2802–2810. doi: 10.1016/j.neuropsychologia.2007.05.002 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Theeuwes, J. (1991). Exogenous and endogenous control of visual attention: The effect of visual onsets and offsets. Perception & Psychophysics, 49, 83–90. doi: 10.3758/BF03211619 CrossRefGoogle Scholar
  40. Theeuwes, J. (1992). Perceptual selectivity of color and form. Perception & Psychophysics, 51, 599–606.CrossRefGoogle Scholar
  41. Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799–806. doi: 10.1037/0096-1523.20.4.799 PubMedGoogle Scholar
  42. Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11, 65–70. doi: 10.3758/BF03206462 CrossRefGoogle Scholar
  43. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. doi: 10.1016/0010-0285(80)90005-5 PubMedCrossRefGoogle Scholar
  44. Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238. doi: 10.3758/BF03200774 CrossRefGoogle Scholar
  45. Wyatte, D., Curran, T., & O’Reilly, R. (2012). The limits of feedforward vision: Recurrent processing promotes robust object recognition when objects are degraded. Journal of Cognitive Neuroscience, 24, 2248–2261. doi: 10.1162/jocn_a_00282 PubMedCrossRefGoogle Scholar
  46. Yee, E., Ahmed, S. Z., & Thompson-Schill, S. L. (2012). Colorless green ideas (can) prime furiously. Psychological Science, 23, 364–369. doi: 10.1177/0956797611430691 PubMedCrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Stephanie C. Goodhew
    • 1
    • 3
  • William Kendall
    • 1
    • 2
  • Susanne Ferber
    • 1
  • Jay Pratt
    • 1
  1. 1.Department of PsychologyUniversity of TorontoTorontoCanada
  2. 2.Department of PsychologyUniversity of British ColumbiaVancouverCanada
  3. 3.Research School of PsychologyThe Australian National UniversityCanberraAustralia

Personalised recommendations