Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations

  • M. R. DelgadoEmail author
  • H. M. Locke
  • V. A. Stenger
  • J. A. Fiez


The goal of this research was to further our understanding of how the striatum responds to the delivery of affective feedback. Previously, we had found that the striatum showed a pattern of sustained activation after presentation of a monetary reward, in contrast to a decrease in the hemodynamic response after a punishment. In this study, we tested whether the activity of the striatum could be modulated by parametric variations in the amount of financial reward or punishment. We used an event-related fMRI design in which participants received large or small monetary rewards or punishments after performance in a gambling task. A parametric ordering of conditions was observed in the dorsal striatum according to both magnitude and valence. In addition, an early response to the presentation of feedback was observed and replicated in a second experiment with increased temporal resolution. This study further implicates the dorsal striatum as an integral component of a reward circuitry responsible for the control of motivated behavior, serving to code for such feedback properties as valence and magnitude.


Ventral Striatum Dorsal Striatum Middle Frontal Gyrus Monetary Reward Large Reward 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8, 360–369.CrossRefPubMedGoogle Scholar
  2. Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O’Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32, 537–551.CrossRefPubMedGoogle Scholar
  3. Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A.M., & Kimura, M. (1994). Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. Journal of Neuroscience, 14, 3969–3984.PubMedGoogle Scholar
  4. Apicella, P., Ljungberg, T., Scarnati, E., & Schultz, W. (1991). Responses to reward in monkey dorsal and ventral striatum.Experimental Brain Research, 85, 491–500.CrossRefGoogle Scholar
  5. Apicella, P., Scarnati, E., Ljungberg, T., & Schultz, W. (1992). Neuronal activity in monkey striatum related to the expectation of predictable environmental events. Journal of Neurophysiology, 68, 945–960.PubMedGoogle Scholar
  6. Bandettini, P. A. (1999). The temporal resolution of functional MRI. In C. Moonen, & P. A. Bandettini (Eds.), Functional MRI (pp. 205–220). New York: Springer-Verlag.Google Scholar
  7. Bechara, A., Damasio, H., & Damasio, A. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.CrossRefPubMedGoogle Scholar
  8. Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 2793–2798.PubMedGoogle Scholar
  9. Blamire, A. M., Ogawa, S., Ugurbil, K., Rothman, D., McCarthy,G., Ellermann, J. M., Hyder, F., Rattner, Z., & Shulman, R. G. (1992). Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proceedings of the National Academy of Sciences, 89, 11069–11073.CrossRefGoogle Scholar
  10. Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619–639.CrossRefPubMedGoogle Scholar
  11. Breiter, H. C., & Rosen, B. R. (1999). Functional magnetic resonance imaging of brain reward circuitry in the human. In J. F. McGinty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug abuse. In honor of Lennart Heimer (Annals of the New York Academy of Sciences, Vol. 877, pp. 523–547). New York: New York Academy of Sciences.Google Scholar
  12. Brown, V. J., & Bowman, E. M. (1995). Discriminative cues indicating reward magnitude continue to determine reaction time of rats following lesions of the nucleus accumbens. European Journal of Neuroscience, 7, 2479–2485.CrossRefPubMedGoogle Scholar
  13. Buckner, R. L. (1998). Event-related fMRI and the hemodynamic response. Human Brain Mapping, 6, 373–377.CrossRefPubMedGoogle Scholar
  14. Buckner, R. L., Goodman, J., Burock, M., Rotte, M., Koutstaal, W., Schacter, D., Rosen, B., & Dale, A. M. (1998). Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron, 20, 285–296.CrossRefPubMedGoogle Scholar
  15. Buckner, R. L., & Logan, J. M. (2001). Functional neuroimaging methods: PET and fMRI. In R. Cabeza & A. Kingstone (Eds.), Handbook of functional neuroimaging of cognition (pp. 27–48). Cambridge, MA: MIT Press.Google Scholar
  16. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.CrossRefPubMedGoogle Scholar
  17. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.CrossRefPubMedGoogle Scholar
  18. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers & Biomedical Research, 29, 162–173.CrossRefGoogle Scholar
  19. Crespi, L. P. (1942). Quantitative variation of reinforcement and level of performance. American Journal of Psychology, 55, 467–517.CrossRefGoogle Scholar
  20. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J.A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072–3077.PubMedGoogle Scholar
  21. Delgado, M. [R.], Sypher, H., Stenger, V., & Fiez, J. (2000). Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations. Society for Neuroscience Abstracts, 26, 1073.Google Scholar
  22. Di Chiara, G., Tanda, G., Bassareo, V., Pontieri, F., Acquas, E., Fenu, S., Cadoni, C., & Carboni, E. (1999). Drug addiction as a disorder of associative learning: Role of nucleus accumbens shell/ extended amygdala dopamine. In J. F. McGinty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug abuse. In honor of Lennart Heimer (Annals of the New York Academy of Sciences, Vol. 877, pp. 461–485). New York: New York Academy of Sciences.Google Scholar
  23. Elliott, R., Friston, K. J., & Dolan, R. J. (2000). Dissociable neural responses in human reward systems. Journal of Neuroscience, 20, 6159–6165.PubMedGoogle Scholar
  24. Elliott, R., Sahakian, B. J., Michael, A., Paykel, E. S., & Dolan, R. J. (1998). Abnormal neural response to feedback on planning and guessing tasks in patients with unipolar depression. Psychological Medicine, 28, 559–571.CrossRefPubMedGoogle Scholar
  25. Everitt, B. J., Parkinson, J. A., Olmstead, M. C., Arroyo, M., Robledo, P., & Robbins, T. W. (1999). Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. In J. F. McGinty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug abuse. In honor of Lennart Heimer (Annals of the New York Academy of Sciences, Vol. 877, pp. 412-438). New York: New York Academy of Sciences.Google Scholar
  26. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance Medicine, 33, 636–647.CrossRefGoogle Scholar
  27. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 1180–1187.CrossRefPubMedGoogle Scholar
  28. Groenewegen, H. J., Wright, C. I., Beijer, A. V., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. In J. F. McGinty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug abuse. In honor of Lennart Heimer (Annals of the New York Academy of Sciences, Vol. 877, pp. 49-63). New York: New York Academy of Sciences.Google Scholar
  29. Haber, S. N., Kunishio, K., Mizobuchi, M., & Lynd-Balta, E. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. Journal of Neuroscience, 15, 4851–4867.PubMedGoogle Scholar
  30. Hassani, O. K., Cromwell, H. C., & Schultz, W. (2001). Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. Journal of Neurophysiology, 85, 2477–2489.PubMedGoogle Scholar
  31. Hikosaka, O., Sakamoto, M., & Usui, S. (1989). Functional properties of monkey caudate neurons: III. Activities related to expectation of target and reward. Journal of Neurophysiology, 61, 814–832.PubMedGoogle Scholar
  32. Hollerman, J. R., Tremblay, L., & Schultz, W. (1998). Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology, 80, 947–963.PubMedGoogle Scholar
  33. Hollerman, J. R., Tremblay, L., & Schultz, W. (2000). Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Progress in Brain Research, 126, 193–215.CrossRefPubMedGoogle Scholar
  34. Ito, R., Dalley, J. W., Robbins, T. W., & Everitt, B. J. (2002). Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. Journal of Neuroscience, 22, 6247–6253.PubMedGoogle Scholar
  35. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  36. Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1, 411–416.CrossRefPubMedGoogle Scholar
  37. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21, RC159.Google Scholar
  38. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with eventrelated fMRI. NeuroReport, 12, 3683–3687.CrossRefPubMedGoogle Scholar
  39. Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12, 20–27.CrossRefPubMedGoogle Scholar
  40. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Brooks, D. J., Bench, C. J., & Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.CrossRefPubMedGoogle Scholar
  41. Koob, G. F. (1999). The role of the striatopallidal and extended amygdala systems in drug addiction. In J. F. McGinty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug abuse. In honor of Lennart Heimer (Annals of the New York Academy of Sciences, Vol. 877, pp. 445–460). New York: New York Academy of Sciences.Google Scholar
  42. Koob, G. F., & Nestler, E. J. (1997). The neurobiology of drug addiction. Journal of Neuropsychiatry & Clinical Neurosciences, 9, 482–497.Google Scholar
  43. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R., Cheng, H., Brady, T. J., & Rosen, B. R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89, 5675–5679.CrossRefGoogle Scholar
  44. Lauwereyns, J., Takikawa, Y., Kawagoe, R., Kobayashi, S. Koizumi, M., Coe, B., Sakagami, M., & Hikosaka, O. (2002). Feature-based anticipation of cues that predict reward in monkey caudate nucleus. Neuron, 33, 463–473.CrossRefPubMedGoogle Scholar
  45. Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate of response bias in monkey caudate nucleus. Nature, 418, 413–417.CrossRefPubMedGoogle Scholar
  46. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRefPubMedGoogle Scholar
  47. Leon, M. I., & Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24, 415–425.CrossRefPubMedGoogle Scholar
  48. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188.PubMedGoogle Scholar
  49. Macwhinney, B., Cohen, J., & Provost, J. (1997). The PsyScope experiment-building system. Spatial Vision, 11, 99–101.CrossRefPubMedGoogle Scholar
  50. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain & Cognition, 42, 183–200.CrossRefGoogle Scholar
  51. Noll, D. C., Cohen, J. D., Meyer, C. H., & Schneider, W. (1995). Spiral K-space MR imaging of cortical activation. Journal of Magnetic Resonance Imaging, 5, 49–56.CrossRefPubMedGoogle Scholar
  52. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.CrossRefPubMedGoogle Scholar
  53. Pagnoni, G., Zink, C. F., Montague, P. R., & Berns, G. S. (2002). Activity in human ventral striatum locked to errors of reward prediction. Nature Neuroscience, 5, 97–98.CrossRefPubMedGoogle Scholar
  54. Robbins, T. W., & Everitt, B. J. (1992). Functions of dopamine in the dorsal and ventral striatum. Seminars in the Neurosciences, 4, 119–127.CrossRefGoogle Scholar
  55. Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6, 228–236.CrossRefPubMedGoogle Scholar
  56. Rogers, R. D., Owen, A. M., Middleton, H. C., Williams, E. J., Pickard, J. D., Sahakian, B. J., & Robbins, T. W. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19, 9029–9038.PubMedGoogle Scholar
  57. Rolls, E. T. (1999). The brain and emotion. Oxford: Oxford University Press.Google Scholar
  58. Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.CrossRefPubMedGoogle Scholar
  59. Salinas, J. A., Packard, M. G., & McGaugh, J. L. (1993). Amygdala modulates memory for changes in reward magnitude: Reversible post-training inactivation with lidocaine attenuates the response to a reduction in reward. Behavioural Brain Research, 59, 153–159.CrossRefPubMedGoogle Scholar
  60. Salinas, J. A., & White, N. M. (1998). Contributions of the hippocampus, amygdala, and dorsal striatum to the response elicited by reward reduction. Behavioral Neurosciences, 112, 812–826.CrossRefGoogle Scholar
  61. Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews: Neurosciences, 1, 199–207.CrossRefGoogle Scholar
  62. Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to the expectation of reward. Journal of Neuroscience, 12, 4595–4610.PubMedGoogle Scholar
  63. Schultz, W., Tremblay, L., & Hollerman, J. R. (1998). Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology, 37, 421–429.CrossRefPubMedGoogle Scholar
  64. Shidara, M., Aigner, T. G., & Richmond, B. J. (1998). Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. Journal of Neuroscience, 18, 2613–2625.PubMedGoogle Scholar
  65. Takahashi, N., & Kawamura, M. (2002). Pure topographical disorientation: The anatomical basis of landmark agnosia. Cortex, 38, 717–725.CrossRefPubMedGoogle Scholar
  66. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: An approach to medical cerebral imaging. New York: Thieme Medical Publishers.Google Scholar
  67. Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.CrossRefPubMedGoogle Scholar
  68. Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., Wong, C., Gatley, S. J., Gifford, A. N., Ding, Y. S., & Pappas, N. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44, 175–180.CrossRefPubMedGoogle Scholar
  69. Woods, R. P., Cherry, S. R., & Mazziotta, J. C. (1992). Rapid automated algorithm for aligning and reslicing PET images. Journal of Computer Assisted Tomography, 16, 620–633.CrossRefPubMedGoogle Scholar
  70. Woods, R. P., Mazziotta, J. C., & Cherry, S. R. (1993). MRI-PET registration with automated algorithm. Journal of Computer Assisted Tomography, 17, 536–546.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2003

Authors and Affiliations

  • M. R. Delgado
    • 1
    • 2
    Email author
  • H. M. Locke
    • 1
    • 2
  • V. A. Stenger
    • 1
    • 2
  • J. A. Fiez
    • 1
    • 2
  1. 1.University of PittsburghPittsburgh
  2. 2.Center for the Neural Basis of CognitionPittsburgh

Personalised recommendations