Skip to main content
Log in

A new device to present textured stimuli to touch with simultaneous EEG recording

  • Articles
  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

The study of touch has recently grown, due mainly to the extensive use of several types of actuators that stimulate several subsystems of touch. There is a widespread interest in applying these mechanisms to the study of the neurophysiological correlates of tactual perception. In this article, we present a new device (the tactile spinning wheel [TSW]) for delivering textured surfaces to the finger pad. The TSW allows one to control several parameters of the stimulation (angular speed, texture, etc.) and, connected to an EEG recording system, makes it possible to study neural electrophysiological events. The device consists of a rotating platform on which the tactile stimuli are fixed, a system that synchronizes stimuli onset with the EEG system, and an electronic interface that controls the platform. We present the technical details of the TSW, its calibration, and some experimental results we have obtained with this device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allerkamp, D., Böttcher, G., Wolter, F.-E., Brady, A. C., Qu, J., & Summers, I. R. (2007). A vibrotactile approach to tactile rendering. The Visual Computer, 23, 97–108. doi:10.1007/s00371-006-0031-5

    Article  Google Scholar 

  • Ballesteros, S., Muñoz, F., Sebastián, M., García, B., & Reales, J. M. (2009). ERP evidence of tactile texture processing: Effects of roughness and movement. In Proceedings of WorldHaptics (WHC’09) (pp. 166–171). Los Alamitos, CA: IEEE Computer Society Press. doi:10.1109/WHC.2009.4810901

    Google Scholar 

  • Bauer, M., Oostenveld, R., Peeters, M., & Fries, P. (2006). Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. Journal of Neuroscience, 26, 490–501. doi:10.1523/ JNEUROSCI.5228-04.2006

    Article  PubMed  Google Scholar 

  • Bergmann Tiest, W. M., & Kappers, A. M. L. (2006). Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychologica, 121, 1–20.

    Article  PubMed  Google Scholar 

  • Bergmann Tiest, W. M., & Kappers, A. M. L. (2007). Haptic and visual perception of roughness. Acta Psychologica, 124, 177–189.

    Article  PubMed  Google Scholar 

  • Bergmann Tiest, W. M., & Kappers, A. M. L. (2008). Thermosensory reversal effect quantified. Acta Psychologica, 127, 46–50. doi:10.1016/j.actpsy.2006.12.006

    Article  PubMed  Google Scholar 

  • Briggs, R. W., Dy-Liacco, I., Malcolm, M. P., Lee, H., Peck, K. K., Gopinath, K. S., et al. (2004). A pneumatic vibrotactile stimulation device for fMRI. Magnetic Resonance in Medicine, 51, 640–643. doi:10.1002/mrm.10732

    Article  PubMed  Google Scholar 

  • Cholewiak, R. W., & Collins, A. A. (1995). Correlates of vibrotactile pattern processing: Sensory, perceptual, and cognitive factors. In R. Eiler & K. Ollers (Eds.), Proceedings of the 3rd International Conference on Tactile Aids, Hearing Aids and Cochlear Implants (pp. 86–101). Miami: University of Miami, Mailman Center.

    Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi:10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  • Dresel, C., Parzinger, A., Rimpau, C., Zimmer, C., Ceballos-Baumann, A. O., & Haslinger, B. [A.] (2008). A new device for tactile stimulation during fMRI. NeuroImage, 39, 1094–1103. doi:10.1016/j.neuroimage.2007.09.033

    Article  PubMed  Google Scholar 

  • Essick, G. K., James, A., & McGlone, F. P. (1999). Psychophysical assessment of the affective components of non-painful touch. NeuroReport, 10, 2083–2087.

    Article  PubMed  Google Scholar 

  • Gillmeister, H., & Eimer, M. (2007). Tactile enhancement of auditory detection and perceived loudness. Brain Research, 1160, 58–68. doi:10.1016/j.brainres.2007.03.041

    Article  PubMed  Google Scholar 

  • Golaszewski, S. M., Siedentopf, C. M., Baldauf, E., Koppelstaetter, F., Eisner, W., Unterrainer, J., et al. (2002). Functional magnetic resonance imaging of the human sensorimotor cortex using a novel vibrotactile stimulator. NeuroImage, 17, 421–430. doi:10.1006/ nimg.2002.1195

    Article  PubMed  Google Scholar 

  • Golaszewski, S. M., Zschiegner, F., Siedentopf, C. M., Unterrainer, J., Sweeney, R. A., Eisner, W., et al. (2002). A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex. Neuroscience Letters, 324, 125–128. doi:10.1016/S0304-3940(02)00229-X

    Article  PubMed  Google Scholar 

  • Granovsky, Y., Matre, D., Sokolik, A., Lorenz, J., & Casey, K. L. (2005). Thermoreceptive innervation of human glabrous and hairy skin: A contact heat evoked potential analysis. Pain, 115, 238–247. doi:10.1016/j.pain.2005.02.017

    Article  PubMed  Google Scholar 

  • Greenspan, J. D., & Bolanowski, S. J. (1996). The psychophysics of tactile perception and its peripheral physiological basis. In L. Kruger (Ed.), Pain and touch (2nd ed., pp. 25–103). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Grunwald, M. (Ed.) (2008). Human haptic perception: Basics and applications. Boston: Birkhäuser.

    Google Scholar 

  • Heller, M. A., & Ballesteros, S. (Eds.) (2006). Touch and blindness: Psychology and neuroscience. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Hoechstetter, K., Meinck, H.-M., Henningsen, P., Scherg, M., & Rupp, A. (2002). Psychogenic sensory loss: Magnetic source imaging reveals normal tactile evoked activity of the human primary and secondary somatosensory cortex. Neuroscience Letters, 323, 137–140. doi:10.1016/S0304-3940(02)00130-1

    Article  PubMed  Google Scholar 

  • Hoechstetter, K., Rupp, A., Meinck, H.-M., Weckesser, D., Bornfleth, H., Stippich, C., et al. (2000). Magnetic source imaging of tactile input shows task-independent attention effects in SII. NeuroReport, 11, 2461–2465.

    Article  PubMed  Google Scholar 

  • Huang, R.-S., & Sereno, M. I. (2007). Dodecapus: An MR-compatible system for somatosensory stimulation. NeuroImage, 34, 1060–1073. doi:10.1016/j.neuroimage.2006.10.024

    Article  PubMed  Google Scholar 

  • Iannetti, G. D., Zambreanu, L., & Tracey, I. (2006). Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. Journal of Physiology, 577, 235–248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingeholm, J. E., Dold, G. R., Pfeffer, L. E., Ide, D., Goldstein, S. R., Johnson, K. O., & Van Boven, R. W. (2006). The Helix: A multi-modal tactile stimulator for human functional neuroimaging. Journal of Neuroscience Methods, 155, 217–223. doi:10.1016/j.jneumeth.2006.01.018

    Article  PubMed  Google Scholar 

  • Jiang, W., Tremblay, F., & Chapman, C. E. (1997). Neuronal encoding of texture changes in the primary and the secondary somatosensory cortical areas of monkeys during passive texture discrimination. Journal of Neurophysiology, 77, 1656–1662.

    Article  PubMed  Google Scholar 

  • Kenaley, G. L., & Cutkosky, M. R. (1989). Electrorheological fluidbased robotic fingers with tactile sensing. In Proceedings of the 1989 IEEE International Conference on Robotics & Automation (pp. 132–136), Scottsdale, AZ.

  • Kirman, J. H. (1974). Tactile apparent movement: The effects of interstimulus onset interval and stimulus duration. Perception & Psychophysics, 15, 1–6.

    Article  Google Scholar 

  • Kitada, R., Hashimoto, T., Kochiyama, T., Kito, T., Okada, T., Matsumura, M., et al. (2005). Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study. NeuroImage, 25, 90–100. doi:10.1016/j.neuroimage.2004.11.026

    Article  PubMed  Google Scholar 

  • Klatzky, R., & Lederman, S. J. (2003). Touch. In I. B. Weiner (Series Ed.) & A. F. Healy & R. W. Proctor (Vol. Eds.), Handbook of psychology: Vol. 4. Experimental psychology (pp. 147–176). New York: Wiley.

    Chapter  Google Scholar 

  • Konyo, M., Akazawa, K., Tadokoro, S., & Takamori, T. (2003). Tactile feel display for virtual active touch. In Proceedings of the IEEE/ RSJ International Conference on Intelligent Robots and Systems (pp. 3744–3750). Las Vegas. doi:10.1109/IROS.2003.1249737

  • Konyo, M., Tadokoro, S., Takamori, T., & Oguro, K. (2000). Artificial tactile feel display using soft gel actuators. In Proceedings of the 2000 IEEE Conference on Robotics and Automation (pp. 3416–3421). Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Lamb, G. D. (1983). Tactile discrimination of textured surfaces: Psychophysical performance measurements in humans. Journal of Physiology, 338, 551–565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lederman, S. J. (1981). The perception of surface roughness by active and passive touch. Bulletin of the Psychonomic Society, 18, 253–255.

    Article  Google Scholar 

  • Makeig, S. (1993). Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography & Clinical Neurophysiology, 86, 283–293.

    Article  Google Scholar 

  • Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., & Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences, 94, 10979–10984.

    Article  Google Scholar 

  • Müller, M. M., & Giabbiconi, C.-M. (2008). Attention in sense of touch. In M. Grunwald (Ed.), Human haptic perception: Basics and applications (pp. 199–206). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Overduin, S. A., & Servos, P. (2004). Distributed digit somatotopy in primary somatosensory cortex. NeuroImage, 23, 462–472. doi:10.1016/j.neuroimage.2004.06.024

    Article  PubMed  Google Scholar 

  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65. doi:10.1016/0167-8760(84)90014-X

    Article  PubMed  Google Scholar 

  • Sherrick, C. E., & Rogers, R. (1966). Apparent haptic movement. Perception & Psychophysics, 1, 175–180.

    Article  Google Scholar 

  • Summers, I. R., Francis, S. T., Bowtell, R. W., McGlone, F. P., & Clemence, M. (2009). A functional-magnetic-resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip. Journal of the Acoustical Society of America, 125, 1033–1039. doi:10.1121/1.3056399

    Article  PubMed  Google Scholar 

  • Tannan, V., Whitsel, B. L., & Tommerdahl, M. A. (2006). Vibrotactile adaptation enhances spatial localization. Brain Research, 1102, 109–116.

    Article  PubMed  Google Scholar 

  • Velázquez, R., Pissaloux, E., Hafez, M., & Szewczyk, J. (2007). Toward low-cost highly portable tactile displays with shape memory alloys. Applied Bionics & Biomechanics, 4, 57–70.

    Article  Google Scholar 

  • Verrillo, R. T., Bolanowski, S. J., & McGlone, F. P. (1999). Subjective magnitude of tactile roughness. Somatosensory & Motor Research, 16, 352–360. doi:10.1080/08990229970401

    Article  Google Scholar 

  • Zappe, A.-C., Maucher, T., Meier, K., & Scheiber, C. (2004). Evaluation of a pneumatically driven tactile stimulator device for vision substitution during fMRI studies. Magnetic Resonance in Medicine, 51, 828–834. doi:10.1002/mrm.20021

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Reales Avilés.

Additional information

This work was supported by a grant from the European Community: FP6 NEST-2005-Path-IMP Grant 043432 (SOMAPS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reales Avilés, J.M., Muñoz Muñoz, F., Kleinböhl, D. et al. A new device to present textured stimuli to touch with simultaneous EEG recording. Behavior Research Methods 42, 547–555 (2010). https://doi.org/10.3758/BRM.42.2.547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BRM.42.2.547

Keywords

Navigation