Advertisement

Reflexive activation of newly instructed stimulus–response rules: evidence from lateralized readiness potentials in no-go trials

  • Nachshon MeiranEmail author
  • Maayan Pereg
  • Yoav Kessler
  • Michael W. Cole
  • Todd S. Braver
Article

Abstract

Previous behavioral and electrophysiological evidence has suggested that the instructions for a new choice task are processed even when they are not currently required, indicating intention-based reflexivity. Yet these demonstrations were found in experiments in which participants were set to execute a response (go). In the present experiment, we asked whether intention-based reflexivity would also be observed under unfavorable conditions in which participants were set not to respond (no-go). In each miniblock of our paradigm, participants received instructions for a task in which two new stimuli were mapped to right/left keys. Immediately after the instructions, a no-go phase began, which was immediately followed by a go phase. We found a significant stimulus-locked lateralized readiness potential in the first no-go trial, indicating reflexive operation of the new instructions. These results show that representing instructions in working memory provides sufficient conditions for stimuli to launch task processing, proceeding all the way until motor response-specific brain activation, which takes place even under unfavorable, no-go conditions.

Keywords

Instructions LRP Intention-based reflexivity Working memory Automaticity 

Notes

Author Note

This research was supported by a research grant from the USA–Israel Bi-national Science Foundation to the first and last authors. We thank Florian Waszak for a stimulating discussion that was instrumental in generating this line of research.

References

  1. Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406. doi: 10.1037/0033-295X.89.4.369 CrossRefGoogle Scholar
  2. Bargh, J. A. (1992). The ecology of automaticity: Toward establishing the conditions needed to produce automatic processing effects. American Journal of Psychology, 105, 181–199.CrossRefPubMedGoogle Scholar
  3. Besner, D., & Risko, E. F. (2005). Stimulus–response compatible orienting and the effect of an action not taken: Perception delayed is automaticity denied. Psychonomic Bulletin and Review, 12, 271–275. doi: 10.3758/BF03196371 CrossRefPubMedGoogle Scholar
  4. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. doi: 10.1016/j.tics.2011.12.010 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bugmann, G. (2012). Modeling fast stimulus–response association learning along the occipito-parieto-frontal pathway following rule instructions. Brain Research, 1434, 73–89. doi: 10.1016/j.brainres.2011.09.028 CrossRefPubMedGoogle Scholar
  6. Carrillo-de-la-Peña, M. T., Galdo-Álvarez, S., & Lastra-Barreira, C. (2008). Equivalent is not equal: Primary motor cortex (MI) activation during motor imagery and execution of sequential movements. Brain Research, 1226, 134–143.CrossRefPubMedGoogle Scholar
  7. Carrillo-de-la-Peña, M. T., Lastra-Barreira, C., & Galdo-Álvarez, S. (2006). Limb (hand vs. foot) and response conflict have similar effects on event-related potentials (ERPs) recorded during motor imagery and overt execution. European Journal of Neuroscience, 24, 635–643.CrossRefPubMedGoogle Scholar
  8. Chatham, C. H., Frank, M. J., & Badre, D. (2014). Corticostriatal output gating during selection from working memory. Neuron, 81, 930–942. doi: 10.1016/j.neuron.2014.01.002 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Cohen-Kdoshay, O., & Meiran, N. (2007). The representation of instructions in working memory leads to autonomous response activation: Evidence from the first trials in the flanker paradigm. Quarterly Journal of Experimental Psychology, 60, 1140–1154.Google Scholar
  10. Cohen-Kdoshay, O., & Meiran, N. (2009). The representation of instructions operates like a prepared reflex: Flanker compatibility effects found in first trial following S–R instructions. Experimental Psychology, 56, 128–133. doi: 10.1027/1618-3169.56.2.128 CrossRefPubMedGoogle Scholar
  11. Cole, M. W., Bagic, A., Kass, R., & Schneider, W. (2010). Prefrontal dynamics underlying rapid instructed task learning reverse with practice. Journal of Neuroscience, 30, 14245–14254. doi: 10.1523/JNEUROSCI.1662-10.2010 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 13, 1–22. doi: 10.3758/s13415-012-0125-7 CrossRefGoogle Scholar
  13. Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37, 343–360. doi: 10.1016/j.neuroimage.2007.03.071 CrossRefPubMedGoogle Scholar
  14. Coles, M. G. H. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology, 26, 251–269.CrossRefPubMedGoogle Scholar
  15. De Houwer, J., Beckers, T., Vandorpe, S., & Custers, R. (2005). Further evidence for the role of mode-independent short-term associations in spatial Simon effects. Perception & Psychophysics, 67, 659–666. doi: 10.3758/BF03193522 CrossRefGoogle Scholar
  16. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009 CrossRefPubMedGoogle Scholar
  17. Dumontheil, I., Thompson, R., & Duncan, J. (2011). Assembly and use of new task rules in fronto-parietal cortex. Journal of Cognitive Neuroscience, 23, 168–182. doi: 10.1162/jocn.2010.21439 CrossRefPubMedGoogle Scholar
  18. Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172–179. doi: 10.1016/j.tics.2010.01.004 CrossRefPubMedGoogle Scholar
  19. Eimer, M., & Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24, 1737–1747.PubMedGoogle Scholar
  20. Eimer, M., & Schlaghecken, F. (2003). Response facilitation and inhibition in subliminal priming. Biological Psychology, 64, 7–26. doi: 10.1016/S0301-0511(03)00100-5 CrossRefPubMedGoogle Scholar
  21. Everaert, T., Theeuwes, M., Liefooghe, B., & De Houwer, J. (in press). Automatic motor activation by mere instruction. Cognitive, Affective, & Behavioral Neuroscience. doi: 10.3758/s13415-014-0294-7
  22. Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497–517.CrossRefPubMedGoogle Scholar
  23. Galdo-Álvarez, S., & Carrillo de la Peña, M. T. (2004). ERP evidence of MI activation without motor response execution. NeuroReport, 15, 2067–2070.CrossRefPubMedGoogle Scholar
  24. Ganor-Stern, D., Tzelgov, J., & Meiran, N. (2013). How are automatic processes elicited by intended actions? Frontiers in Psychology, 4, 851. doi: 10.3389/fpsyg.2013.00851 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331–344. doi: 10.1037/0096-1523.14.3.331 PubMedGoogle Scholar
  26. Guthrie, D., & Buchwald, J. S. (1991). Significance testing of difference potentials. Psychophysiology, 28, 240–244.CrossRefPubMedGoogle Scholar
  27. Hohlefeld, F. U., Nikulin, V. V., & Curio, G. (2011). Visual stimuli evoke rapid activation (120 ms) of sensorimotor cortex for overt but not for covert movements. Brain Research, 1368, 185–195. doi: 10.1016/j.brainres.2010.10.035 CrossRefPubMedGoogle Scholar
  28. Hollands, J. G., & Jarmasz, J. (2010). Revisiting confidence intervals for repeated measures designs. Psychonomic Bulletin & Review, 17, 135–138. doi: 10.3758/PBR.17.1.135 CrossRefGoogle Scholar
  29. Hommel, B. (2000). The prepared reflex: Automaticity and control in stimulus response translation. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 247–273). Cambridge, MA: MIT Press.Google Scholar
  30. Huang, T. R., Hazy, T. E., Herd, S. A., & O’Reilly, R. C. (2013). Assembling old tricks for new tasks: A neural model of instructional learning and control. Journal of Cognitive Neuroscience, 25, 843–851.CrossRefPubMedGoogle Scholar
  31. Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology, 63, 124–138.CrossRefPubMedGoogle Scholar
  32. Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99, 19–27.CrossRefPubMedGoogle Scholar
  33. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility-a model and taxonomy. Psychological Review, 97, 253–270. doi: 10.1037/0033-295X.97.2.253 CrossRefPubMedGoogle Scholar
  34. Kranczioch, C., Mathews, S., Dean, P. J. A., & Sterr, A. (2009). On the equivalence of executed and imagined movements: Evidence from lateralized motor and nonmotor potentials. Human Brain Mapping, 30, 3275–3286.CrossRefPubMedGoogle Scholar
  35. Liefooghe, B., De Houwer, J., & Wenke, D. (2013). Instruction-based response activation depends on task preparation. Psychonomic Bulletin & Review, 20, 481–487.CrossRefGoogle Scholar
  36. Liefooghe, B., Wenke, D., & De Houwer, J. (2012). Instruction-based task-rule congruency effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1325–1335.PubMedGoogle Scholar
  37. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. doi: 10.1037/0033-295X.95.4.492 CrossRefGoogle Scholar
  38. Logan, G. D. (1992). Attention and preattention in theories of automaticity. American Journal of Psychology, 105, 317–339.CrossRefPubMedGoogle Scholar
  39. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
  40. Meiran, N., & Cohen-Kdoshay, O. (2012). Working memory load but not multitasking eliminates the prepared reflex: Further evidence from the adapted flanker paradigm. Acta Psychologica, 139, 309–313. doi: 10.1016/j.actpsy.2011.12.008 CrossRefPubMedGoogle Scholar
  41. Meiran, N., Cole, M. W., & Braver, T. S. (2012). When planning results in loss of control: Intention-based reflexivity and working-memory. Frontiers in Human Neuroscience, 6, 104. doi: 10.3389/fnhum.2012.00104 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Meiran, N., Pereg, M., Kessler, Y., Cole, M. W., & Braver, T. S. (in press). The power of instructions: Proactive configuration of stimulus–response translation. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: 10.1037/a0037190
  43. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi: 10.1146/annurev.neuro.24.1.167 CrossRefPubMedGoogle Scholar
  44. Moors, A., & De Houwer, J. (2006). Automaticity: A conceptual and theoretical analysis. Psychological Bulletin, 132, 297–326. doi: 10.1037/0033-2909.132.2.297 CrossRefPubMedGoogle Scholar
  45. Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60, 306–326.CrossRefPubMedGoogle Scholar
  46. Ramamoorthy, A., & Verguts, T. (2012). Word and deed: A computational model of instruction following. Brain Research, 1439, 54–65. doi: 10.1016/j.brainres.2011.12.025 CrossRefPubMedGoogle Scholar
  47. Rosenbloom, P. S., & Newell, A. (1986). The chunking of goal hierarchies: A generalized model of practice. In R. S. Michaliski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2, pp. 247–288). Los Altos, CA: Morgan Kaufmann.Google Scholar
  48. Ruge, H., & Wolfensteller, U. (2010). Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cerebral Cortex, 20, 1656–1667. doi: 10.1093/cercor/bhp228 CrossRefPubMedGoogle Scholar
  49. Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime User's Guide. Pittsburgh: Psychology Software Tools, Inc.Google Scholar
  50. Shahar, N., Teodorescu, A. R., Usher, M., Pereg, M., & Meiran, N. (in press). Selective influence of working memory load on exceptionally slow reaction times. Journal of Experimental Psychology: General. doi: 10.1037/a0037190
  51. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190. doi: 10.1037/0033-295X.84.2.127 CrossRefGoogle Scholar
  52. Smulders, F. T. Y., & Miller, J. O. (2012). The lateralized readiness potential. In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of event-related potential components (pp. 209–230). New York, NY: Oxford University Press. doi: 10.1093/oxfordhb/9780195374148.013.0115 Google Scholar
  53. Stocco, A., Lebiere, C., O’Reilly, R. C., & Anderson, J. R. (2012). Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks. Cognitive, Affective, & Behavioral Neuroscience, 12, 611–628. doi: 10.3758/s13415-012-0117-7 CrossRefGoogle Scholar
  54. Tzelgov, J. (1997). Automatic but conscious: That is how we act most of the time. In R. Wyer (Ed.), Advances in social cognition (Vol. 10, pp. 217–230). Mahwah, NJ: Erlbaum.Google Scholar
  55. Verbruggen, F., & Logan, G. D. (2009). Automaticity of cognitive control: Goal priming in response-inhibition paradigms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1381–1388. doi: 10.1037/a0016645 PubMedGoogle Scholar
  56. Verbruggen, F., Logan, G. D., Liefooghe, B., & Vandierendonck, A. (2008). Short-term aftereffects of response inhibition: Repetition priming or between-trial control adjustments? Journal of Experimental Psychology: Human Perception and Performance, 34, 413–426. doi: 10.1037/0096-1523.34.2.413 PubMedGoogle Scholar
  57. Wenke, D., Gaschler, R., & Nattkemper, D. (2007). Instruction-induced feature binding. Psychological Research, 71, 92–106. doi: 10.1007/s00426-005-0038-y CrossRefPubMedGoogle Scholar
  58. Wenke, D., Gaschler, R., Nattkemper, D., & Frensch, P. A. (2009). Strategic influences on implementing instructions for future actions. Psychological Research, 73, 587–601. doi: 10.1007/s00426-009-0239-x CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Nachshon Meiran
    • 1
    Email author
  • Maayan Pereg
    • 1
  • Yoav Kessler
    • 1
  • Michael W. Cole
    • 2
  • Todd S. Braver
    • 3
  1. 1.Department of Psychology and Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Center for Molecular and Behavioral NeuroscienceRutgers UniversityRutgersUSA
  3. 3.Department of PsychologyWashington UniversitySt. LouisUSA

Personalised recommendations