Skip to main content
Log in

Mechanical analysis of woven composites at high strain rates and its application to predicting impact behavior

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The deformation behavior of woven composites at high strain rates was analyzed using a constitutive equation developed to describe the nonlinear, anisotropic/asymmetric and rate-dependent mechanical behavior of woven composites. The rate-dependent nonlinear behavior of woven composites was characterized at high strain rates (1 s−1 to 100 s−1) using a tensile testing method first proposed in this research. The material properties for the developed constitutive equation were determined and subsequently used in a finite element analysis of the deformation behavior of woven composites at high strain rates. Finally, the impact behavior of woven composites was predicted using the constitutive equation and the results were compared with experiments, showing that the current constitutive equation including the characterization method is adequate to describe the deformation behavior of woven composites at high strain rates up to impact level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Thiruppukuzhi, C. T. Sun,Compos. Part B-Eng. 29, 535 (1998).

    Article  Google Scholar 

  2. M. V. Hosur, J. Alexander, U. K. Vaidya, S. Jeelani, and A. Maye,Compos. Struct. 63, 75 (2004).

    Article  Google Scholar 

  3. T. Gomez-del Rio, E. Barbero, R. Zaera, C. Navarro,Comp. Sci. Tech. 65, 61 (2005).

    Article  CAS  Google Scholar 

  4. A. Tasdemirci and I. W. Hall,Polym. Test. 25, 797 (2006).

    Article  CAS  Google Scholar 

  5. A. M. S. Hamouda and M. S. J. Hashmi,J. Mater. Process. Tech. 77, 327–336 (1998).

    Article  Google Scholar 

  6. Y. Remond,Comp. Sci. Tech. 65, 421 (2005).

    Article  CAS  Google Scholar 

  7. S. V. Thiruppukuzhi and C. T. Sun,Comp. Sci. Tech. 61, 1 (2001).

    Article  CAS  Google Scholar 

  8. M. S. Al-Haik, H. Garmestani, and A. Savran,Int. J. Plasticity 20, 1875 (2004).

    Article  MATH  CAS  Google Scholar 

  9. F. Fereshteh-Saniee, G. H. Majzoobi, and M. Bahrami,J. Mater. Process. Tech. 162–163, 39 (2005).

    Article  Google Scholar 

  10. G. H. Majzoobi, F. Fereshteh-Saniee, and M. Bahrami,J. Mater. Process. Tech. 162–163, 76 (2005).

    Article  Google Scholar 

  11. C. T. Sun and R. Y. S. Lai,AIAA J. 12, 1415 (1974).

    Article  MATH  ADS  Google Scholar 

  12. K. N. Shivakumar, W. Elber, W. Illg,J. Appl. Mech 52, 674 (1985).

    Article  Google Scholar 

  13. Y. Duan, M. Keefe, T. A. Bogetti, and B. Powers,Int. J. Mech. Sci. 48, 33 (2006).

    Article  Google Scholar 

  14. L. Iannucci,Int. J. Impact Eng. 32, 1013 (2006).

    Article  Google Scholar 

  15. R. A. Clegg, D. M. White, W. Riedel, W. Harwick,Int. J. Impact Eng. 33, 190 (2006).

    Article  Google Scholar 

  16. ABAQUS User’s manual for version 6.4, Hibbitt, Karlsson & Sorenson, Inc. (2003).

  17. A. Matzenmiller, J. Lubliner, and R. L. Taylor,Mech. Mater. 20, 125 (1995).

    Article  Google Scholar 

  18. D. Krajeinovic,Int. J. Solids Struct. 37, 267 (2000).

    Article  Google Scholar 

  19. G. J. Dvorak and Y. A. Bahei-El-Din,Acta mech. 69, 219 (1987).

    Article  MATH  Google Scholar 

  20. J. K. Chen, F. A. Allahdadi, and C. T. Sun,J. Compos. Mater. 31, 788 (1997).

    CAS  Google Scholar 

  21. H. D. Espinosa, S. Dwivedi, and H. C. Lu,Comput. Method. Appl. M. 183, 259–290 (2000).

    Article  MATH  Google Scholar 

  22. J. H. Kim, M. G. Lee, H. Ryou, K. Chung, J. R. Youn, and T. J. Kang,Polym. Composite 29, 216 (2008).

    Article  CAS  Google Scholar 

  23. J. L. Chaboche,Int. J. Plasticity 2, 149 (1986).

    Article  MATH  Google Scholar 

  24. M. G. Lee, D. Kim, K. Chung, J. R. Youn, and T. J. Kang,Polym. Polym. Compos. 12, 225 (2004).

    CAS  Google Scholar 

  25. J. W. Yoon, D. Y. Yang, and K. Chung,Comput. Method. Appl. M. 174, 23 (1999).

    Article  MATH  Google Scholar 

  26. K. Chung and O. Richmond,Int. J. Plasticity 9, 907 (1993).

    Article  MATH  Google Scholar 

  27. J.-H. Kim, W. Lee, D. Kim, J. Kong, C. Kim, M. L. Wenner, and K. Chung,Met. Mater.-Int. 12, 293 (2006).

    Article  CAS  Google Scholar 

  28. H. Ryou, K. Chung, and W. R. Yu,Compos. Part A-Appl. S. 38, 2500 (2007).

    Article  Google Scholar 

  29. J. Rodriguez, I. S. Chocron, M. A. Martinez, and V. Sanchez-Galvez,Compos. Part B-Eng. B 27, 147 (1996).

    Article  Google Scholar 

  30. N. L. Hancox and R. M. Mayer,Design Data for Reinforced Plastics, Chapman & Hall, U.K. (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwansoo Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryou, H., Chung, K. & Lim, JH. Mechanical analysis of woven composites at high strain rates and its application to predicting impact behavior. Met. Mater. Int. 14, 679–687 (2008). https://doi.org/10.3365/met.mat.2008.12.679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.12.679

Keywords

Navigation