Skip to main content
Log in

Microstructures and mechanical properties of biocompatible Ti-42 wt.%Nb P/M alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ti-42 wt. %Nb powder was prepared by high-energy mechanical milling (HEMM). The particle size distribution (PSD) of the as-milled powder has been investigated using a particle size distribution analyzer. The morphology and microstructure of the as-milled powder have been investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), transmission electron microscopy (TEM), and differential thermal analysis (DTA). Also, the corrosion property and biocompatibility of sintered specimens comprising mixed and milled powders have been investigated. The milled powders were sintered using pulse current activated sintering (PCAS). PCAS was employed in order to provide more refined grain size and full density to Ti-42 %Nb alloy on the basis of short sintering time with pressure. The density of the sintered Ti-42 %Nb specimen fabricated using the milled powder increased with increased milling time due to high free surface area and defect density. The density of the sintered Ti-42 %Nb specimen fabricated using as-mixed powder increased with increased sintering temperature up to 950 °C. The microstructure of the sintered Ti-42 %Nb specimen fabricated using 4h-milled powder was composed of Nb-rich and Nb-poor phases that are more refined and homogeneously distributed. The mechanical properties and biocompatibility of the sintered Ti-42 %Nb specimen fabricated using milled powder were superior to those of a commercial, Ti-6wt.%Al-4wt.%V alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Long and H. J. Rack,Biomaterials 19, 1621 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. Y. Sasaki, K. Doi and T. Matsushita,Mater. Technol. 66, 64 (1996).

    Google Scholar 

  3. M. Niinomi,Mater. Sci. Eng. A 243, 231 (1998).

    Article  Google Scholar 

  4. S. G. Steinemann,Sci. and Tech. 2, 1373 (1985).

    CAS  Google Scholar 

  5. S. Hanada,2004 Korea-Japan International Symposium on Ti, 5 March. CAMTIC, Jeonju, Korea, (2004).

  6. Y. Okazaki, Y. Ito, K. Kyo, and T. Tateisi,Mater. Sci. Eng. A 213, 138 (1996).

    Article  Google Scholar 

  7. I. H. Oh, N. Nomura, and S. Hanada,Mater. Trans. 43, 443 (2002).

    Article  CAS  Google Scholar 

  8. I. H. Oh, H. T. Son, S. H. Chang, H. M. Kim, K. Y. Lee, S. S. Park, and H. Y. Song,J. Kor. Inst. Met. & Mater. 44, 441 (2006).

    CAS  Google Scholar 

  9. H. Y. Song, Y. H. Kim, S. H. Chang, and I. H. Oh,Kor. J. Mater. Res. 17, 107 (2007).

    Article  CAS  Google Scholar 

  10. D. J. Lee, K. K. Lee, K. M. Lee, and J. Y. Hwang,J. Kor. Foundarymen's Soc. 23, 204 (2003).

    Google Scholar 

  11. I. J. Polmear,Light Alloys, Metallurgical and Materials Science Series, p. 162–208, Edward Arnold, London, (1981).

    Google Scholar 

  12. S. E. Kim, H. W. Jeoung, Y. T. Hyun, Y. T. Lee, C. H. Jung, S. K. Kim, J. S. Song, and J. H. Lee,Met. Mater.-Int. 13, 145 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, K.D., Lee, H.B., Kim, I.Y. et al. Microstructures and mechanical properties of biocompatible Ti-42 wt.%Nb P/M alloy. Met. Mater. Int. 14, 327–333 (2008). https://doi.org/10.3365/met.mat.2008.06.327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.06.327

Keywords

Navigation