Skip to main content
Log in

The effects of C-rate on the discharge capacities of LiNi1−yMyO2 (M=Ni, Ga, Al and/or Ti) cathodes

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

LiNi1−yM{y}O{2} specimens with compositions of LiNiO2, LiNi0.975Ga0.025O{2}, LiNi0.975Al0.025O2, LiNi0.995Ti0.005O2 and LiNi0.990Al0.005Ti0.005O2 were synthesized by wet milling and solid-state reaction method. All the synthesized samples possessed the α-NaFeO structure of the rhombohedral system (space group; \(R\bar 3m\)) with no evidence of any impurities. Among the α-LiNiO2 cathodes prepared with the weight ratios of LiNiO2: acetylene black: binder = 85≠10≠5, 85≠12≠3 and 90≠7≠3, the cathode with the weight ratio of 85≠10≠5 had the best cycling performance, with a discharge capacity degradation rate of 1.06 mAh/g/cycle and a discharge capacity at n=20 of 143.5 mAh/g. Among all the samples, LiNi0.990Al0.005Ti0.005O2 had the highest first discharge capacities at 0.1 C, 0.2 C and 0.5 C rates. That sample had the smallest R-factor value, indicating that it had the lowest degree of cation mixing. Among all the samples, LiNi0.975Al0.025O2 showed the lowest rate of decrease in the first discharge capacity with C rate. The first discharge capacities at 0.1 C, 0.2 C and 0.5 C rates were 170.5 mAh/g, 155.0 mAh/g and 124.2 mAh/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc. 138, 2859 (1991).

    Article  CAS  Google Scholar 

  2. A. R. Armstrong and P. G. Bruce, Nature 381, 499 (1996).

    Article  CAS  Google Scholar 

  3. M. Y. Song and D. S. Ahn, Solid State Ionics 112, 245 (1998).

    Article  CAS  Google Scholar 

  4. K. Ozawa, Solid State Ionics 69, 212 (1994).

    Article  CAS  Google Scholar 

  5. R. Alcántara, P. Lavela, J. L. Tirado, R. Stoyanova, and E. Zhecheva, J. Solid State Chem. 134, 265 (1997).

    Article  Google Scholar 

  6. Z. S. Peng, C. R. Wan, and C. Y. Jiang, J. Power Sources 72, 215 (1998).

    Article  CAS  Google Scholar 

  7. J. R. Dahn, U. von Sacken, and C. A. Michal, Solid State Ionics 44, 87 (1990).

    Article  CAS  Google Scholar 

  8. J. R. Dahn, U. von Sacken, M. R. Jukow, and H. Aljanaby, J. Electrochem. Soc. 138, 2207 (1991).

    Article  CAS  Google Scholar 

  9. A. Marini, V. Massarotti, V. Berbenni, D. Capsoni, R. Riccardi, E. Antolini, and B. Passalacqua, Solid State Ionics 45, 143 (1991).

    Article  CAS  Google Scholar 

  10. W. Ebner, D. Fouchard, and L. Xie, Solid State Ionics 69, 238 (1994).

    Article  CAS  Google Scholar 

  11. H.-S. Kim, K.-T. Kim, and P. Periasamy, Electron. Mater. Lett. 2, 119 (2006).

    CAS  Google Scholar 

  12. Y. Nishida, K. Nakane, and T. Stoh, J. Power Sources 68, 561 (1997).

    Article  CAS  Google Scholar 

  13. J. Morales, C. Perez-Vicente, and J. L. Tirado, Mat. Res. Bull. 25, 623 (1990).

    Article  CAS  Google Scholar 

  14. A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmas, Solid State Ionics 90, 83 (1996).

    Article  CAS  Google Scholar 

  15. M. Guilmard, A. Rougier, M. Grune, L. Croguennec, and C. Delmas, J. Power Sources 115, 305 (2003).

    Article  CAS  Google Scholar 

  16. M. Y. Song, R. Lee, and I. H. Kwon, Solid State Ionics 156, 319 (2003).

    Article  CAS  Google Scholar 

  17. Y. Gao, M. V. Yakovleva, and W. B. Ebner, Electrochem. Soc. 142, 702 (1995).

    Article  Google Scholar 

  18. S. H. Chang, S. G. Kang, S. W. Song, J. B. Yoon, and J. H. Choy, Solid State Ionics 86-88, 171 (1996).

    Article  CAS  Google Scholar 

  19. M. Guilmard, L. Croguennec, and C. Delmas, J. Electrochem. Soc. 150, A1287 (2003).

    Article  CAS  Google Scholar 

  20. J. N. Reimers, E. Rossen, C. D. Jones, and J. R. Dahn, Solid State Ionics 61, 335 (1993).

    Article  CAS  Google Scholar 

  21. R. Kanno, T. Shirane, Y. Inaba, and Y. Kawamoto, J. Power Sources 68, 145 (1997).

    Article  CAS  Google Scholar 

  22. H. U. Kim, S. D. Youn, J. C. Lee, H. R. Park, C. G. Park, and M. Y. Song, J. Korean Cer. Soc. 42, 631 (2005).

    Article  CAS  Google Scholar 

  23. H. U. Kim, S. D. Youn, J. C. Lee, H. R. Park, and M. Y. Song, J. Kor. Ceram. Soc. 42, 352 (2005).

    Article  CAS  Google Scholar 

  24. T. Ohzuku, A. Ueda, and M. Nagayana, J. Electrochem. Soc. 40, 1862 (1993).

    Article  Google Scholar 

  25. T. Ohzuku, A. Ueda, and M. Kouguchi, J. Electrochem. Soc. 142, 4033 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.Y., Park, C.K., Yoon, S.D. et al. The effects of C-rate on the discharge capacities of LiNi1−yMyO2 (M=Ni, Ga, Al and/or Ti) cathodes. Electron. Mater. Lett. 5, 151–155 (2009). https://doi.org/10.3365/eml.2009.12.151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/eml.2009.12.151

Keywords

Navigation