Skip to main content
Log in

Androgens and estrogens prevent rosiglitazone-induced adipogenesis in human mesenchymal stem cells

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Thiazolidinediones (TZD), a class of anti-diabetic drugs, determine bone loss and increase fractures particularly in post-menopausal women, thus suggesting a protective role of sex steroids. We have previously demonstrated that the TZD rosiglitazone (RGZ) negatively affects bone mass by inhibiting osteoblastogenesis, yet inducing adipogenesis, in bone marrow-derived human mesenchymal stem cells (hMSC). The aim of this study was to determine whether estrogens and androgens are able to revert the effects of RGZ on bone. hMSC express estrogen receptor a and β and the androgen receptor. We found that 17β-estradiol (10 nM), the phytoestrogen genistein (10 nM), testosterone (10 nM) and the non-aromatizable androgens dihydrotestosterone (10 nM) and methyltrienolone (10 nM) effectively counteracted the adipogenic effect of RGZ (1 µM) in hMSC induced to differentiate into adipocytes, as determined by evaluating the expression of the adipogenic marker peroxisome proliferator-activated receptor γ and the percentage of fat cells. Furthermore, when hMSC were induced to differentiate into osteoblasts, all the above-mentioned molecules and also quercetin, another phytoestrogen, significantly reverted the inhibitory effect of RGZ on the expression of the osteogenic marker osteocalcin and decreased the number of fat cells observed after RGZ exposure. Our study represents, to our knowledge, the first demonstration in hMSC that androgens, independently of their aromatization, and estrogens are able to counteract the negative effects of RGZ on bone. Our data, yet preliminary, suggest the possibility to try to prevent the negative effects of TZD on bone, using steroid receptor modulators, such as plant-derived phytoestrogens, which lack evident adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwartz AV, Sellmeyer DE, Vittinghoff E, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 2006, 91: 3349–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Grey A, Bolland M, Gamble G et al. The peroxisome proliferatorsactivated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007, 92: 1305–10.

    Article  CAS  PubMed  Google Scholar 

  3. Gruntmanis U, Fordan S, Ghayee HK, et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone increases bone resorption in women with type 2 diabetes: a randomized, controlled trial. Calcif Tissue Int. 2010, 86: 343–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kahn SE, Haffner SM, Heise MA, et al; ADOPT Study Group, Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006, 355: 2427–43.

    Article  CAS  PubMed  Google Scholar 

  5. Dormuth CR, Carney G, Carleton B, Bassett K, Wright JM Thiazolidinediones and fractures in men and women. Arch Intern Med 2009, 169: 1395–402.

    Article  CAS  PubMed  Google Scholar 

  6. Mancini T, Mazziotti G, Doga M, et al. Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone 2009, 45: 784–8.

    Article  CAS  PubMed  Google Scholar 

  7. Douglas IJ, Evans SJ, Pocock S, Smeeth L. The risk of fractures associated with thiazolidinediones: a self-controlled case-series study. PLoS Med 2009, 6: e1000154.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bilik D, McEwen LN, Brown MB, et al Thiazolidinediones and fractures: evidence from translating research into action for diabetes. J Clin Endocrinol Metab. 2010, 95: 4560–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Habib ZA, Havstad SL, Wells K, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010, 95: 592–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sorocéanu MA, Miao D, Bai XY, Su H, Goltzman D, Karaplis AC. Rosiglitazone impacts negatively on bone by promoting osteblast/osteocyte apoptosis. J Endocrinol 2004, 183: 203–16.

    Article  PubMed  Google Scholar 

  11. AN AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation Endocrinology 2005, 146: 1226–35.

    Article  Google Scholar 

  12. Lecka-Czernik B Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep 2010, 8: 178–84.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Viccica G, Francucci CM, Marcocci C. The role of PPARγforthe osteoblastic differentiation. J Endocrinol Invest 2010, 33 (7 Suppl): 9–12.

    CAS  PubMed  Google Scholar 

  14. Benvenuti S, Cellai I, Luciani P et al. Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J Endocrinol Invest 2007, 30: RC26–30.

    CAS  PubMed  Google Scholar 

  15. Gurkan UA, Akkus O. The mechanical environment of bone marrow: a review. Ann Biomed Eng 2008, 36: 1978–91.

    Article  PubMed  Google Scholar 

  16. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 2003, 144: 5081–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gupta V, Bhasin S, Guo W, et al. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol 2008, 296: 32–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Benvenuti S, Saccardi R, Luciani P, et al. Neuronal differentiation of human mesenchymal stem cells: changes in the expression of the Alzheimer’s disease-related gene seladin-1. Exp Cell Res 2006, 312: 2592–04.

    Article  CAS  PubMed  Google Scholar 

  19. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284: 143–7.

    Article  CAS  PubMed  Google Scholar 

  20. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8: 315–7.

    Article  CAS  PubMed  Google Scholar 

  21. Venken K, Callewaert F, Boonen S, Vanderschueren D. Sex hormones, their receptors and bone health. Osteoporos Int 2008, 19: 1517–25.

    Article  CAS  PubMed  Google Scholar 

  22. Imai Y, Kondoh S, Kouzmenko A, Kato S. Regulation of bone metabolism by nuclear receptors. Mol Cell Endocrinol 2009, 310: 3–10.

    Article  CAS  PubMed  Google Scholar 

  23. Vandenput L, Ohlsson C. Estrogens as regulators of bone health in men. Nat Rev Endocrinol 2009, 5: 437–43.

    Article  CAS  PubMed  Google Scholar 

  24. Vanderschueren D, Gaytant J, Boonen S, Venken K Androgens and bone. Curr Opin Endocrinol Diabetes Obes 2008, 15: 250–4.

    Article  CAS  PubMed  Google Scholar 

  25. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C. Androgens and bone. Endocr Rev 2004, 25: 389–425.

    Article  CAS  PubMed  Google Scholar 

  26. Patisaul HB. Phytoestrogen action in the adult and developing brain. J Neuroendocrinol 2005, 17: 57–64.

    Article  CAS  PubMed  Google Scholar 

  27. Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Löwik CW. Peroxisome proliferator-activated receptor gamma (PPARgamma) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 2003, 278: 962–7.

    Article  CAS  PubMed  Google Scholar 

  28. Heim M, Frank O, Kampmann G, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 2004, 145: 848–59.

    Article  CAS  PubMed  Google Scholar 

  29. Hirota K, Morikawa K, Hanada H, et al. Effect of genistein and daidzein on the proliferation and differentiation of human preadipocyte cell line. J Agric Food Chem 2010, 58: 5821–7.

    Article  CAS  PubMed  Google Scholar 

  30. Park HJ, Della-Fera MA, Hausman DB, Rayalam S, Ambati S, Baile CA. Genistein inhibits differentiation of primary human adipocytes. The Journal of Nutritional Biochemistry 2009, 20: 140–8.

    Article  CAS  PubMed  Google Scholar 

  31. Berberoglu Z, Yazici AC, Demirag NG. Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: a 2-year follow-up study. Clin Endocrinol (Oxf) 2010, 73: 305–12.

    Article  CAS  Google Scholar 

  32. Zhao L, Brinton RD. WHI and WHIMS follow-up and human studies of soy isoflavones on cognition. Expert Rev Neurother 2007, 7: 1549–64.

    Article  CAS  PubMed  Google Scholar 

  33. Jacobs A, Wegewitz U, Sommerfeld C, Grossklaus R, Lampen A. Efficacy of isoflavones in relieving vasomotor menopausal symptoms — A systematic review. Mol Nutr Food Res 2009, 53: 1084–97.

    Article  CAS  PubMed  Google Scholar 

  34. Coxam V. Phyto-oestrogens and bone health. Proc Nutr Soc 2008, 67: 184–95.

    Article  PubMed  Google Scholar 

  35. Atmaca A, Kleerekoper M, Bayraktar M, Kucuk O. Soy isoflavones in the management of postmenopausal osteoporosis. Menopause 2008, 15: 748–57.

    Article  PubMed  Google Scholar 

  36. Tempfer CB, Froese G, Heinze G, Bentz EK, Hefler LA, Huber JC. Side effects of phytoestrogens: a meta-analysis of randomized trials. Am J Med 2009, 122: 939–46.

    Article  CAS  PubMed  Google Scholar 

  37. Compston JE Sex steroids and bone. Physiol Rev 2001, 81: 419–47.

    CAS  PubMed  Google Scholar 

  38. Kawano H, Sato T, Yamada T, et al. Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci USA 2003, 100: 9416–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall, Williams LK Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 592–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peri MD, PhD.

Additional information

Prof. Mario Serio, our constant source of inspiration, suddenly passed out very recently. This manuscript is dedicated to his memory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benvenuti, S., Cellai, I., Luciani, P. et al. Androgens and estrogens prevent rosiglitazone-induced adipogenesis in human mesenchymal stem cells. J Endocrinol Invest 35, 365–371 (2012). https://doi.org/10.3275/7739

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/7739

Key-words

Navigation