Skip to main content
Log in

Broadband Antireflection Coatings Composed of Subwavelength-Sized SiGe Particles

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Antireflection properties of subwavelength-sized dielectric SiGe particles grown on Si(100) substrates using the dewetting phenomenon are studied. The average particle size has been set by the amount of deposited Ge in the range from 0.2 to 1.4 \(\mu\)m. The studied excitation of magnetic and electric resonances in dielectric SiGe particles has led to a decrease in reflection by approximately 60\(\%\) depending on the average particle size compared to the reflection of the Si surface not covered with particles. The particle size distribution has provided antireflection properties over a wide spectral range, in which small particles created a stronger antireflection effect than large ones. Model calculations have shown that, for particles on the substrate, the efficiency of excitation of magnetic and electric resonances has a strong dependence on the ratio of particle height to particle base size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, and J. Schilling, ‘‘Quantum dot emission driven by Mie resonances in silicon nanostructures,’’ Nano Lett. 17, 6886–6892 (2017). https://doi.org/10.1021/acs.nanolett.7b03248

    Article  ADS  Google Scholar 

  2. Y. Ota, D. Yurasov, A. Novikov, M. Shaleev, K. Gotoh, Y. Kurokawa, and N. Usami, ‘‘Impact of size distributions of Ge islands as etching masks for anisotropic etching on formation of anti-reflection structures,’’ Jpn. J. Appl. Phys. 58, 045505 (2017). https://doi.org/10.7567/1347-4065/ab003b

    Article  ADS  Google Scholar 

  3. A. Yakimov, V. Kirienko, A. Bloshkin, A. Dvurechenskii, and D. Utkin, ‘‘Quantum dot based mid-infrared photodetector enhanced by a hybrid metal-dielectric optical antenna,’’ J. Phys. D: Appl. Phys. 53, 335105 (2020). https://doi.org/10.1088/1361-6463/ab84a7

    Article  Google Scholar 

  4. R. Kumar and S. A. Ramakrishna, ‘‘Enhanced infra-red transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes,’’ J. Phys. D: Appl. Phys. 51, 165104 (2018). https://doi.org/10.1088/1361-6463/aab631

    Article  ADS  Google Scholar 

  5. K. Anikin, E. Rodyakina, S. Veber, A. Milekhin, A. Latyshev, and D. R. T. Zahn, ‘‘Localized surface plasmon resonance in gold nanocluster arrays on opaque substrates,’’ Plasmonics 14, 1527–1537 (2019). https://doi.org/10.1007/s11468-019-00949-2

    Article  Google Scholar 

  6. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, ‘‘Magnetic light,’’ Sci. Rep. 2, 492 (2012). https://doi.org/10.1038/srep00492

    Article  ADS  Google Scholar 

  7. S. I. Lepeshov, A. E. Krasnok, P. A. Belov, and A. E. Miroshnichenko, ‘‘Hybrid nanophotonics,’’ Phys.-Usp. 61, 1035–1050 (2018). https://doi.org/10.3367/UFNe.2017.12.038275

    Article  Google Scholar 

  8. D. E. Utkin, K. V. Anikin, S. L. Veber, and A. A. Shklyaev, ‘‘Dependence of light reflection of germanium Mie nanoresonators on their aspect ratio,’’ Opt. Mater. 109, 110466 (2020). https://doi.org/10.1016/j.optmat.2020.110466

    Article  Google Scholar 

  9. P. Spinelli, M. A., and A. Polman, ‘‘Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,’’ Nat. Commun. 3, 692 (2012). https://doi.org/10.1038/ncomms1691

    Article  ADS  Google Scholar 

  10. Y. F. Huang and S. Chattopadhyay, ‘‘Nanostructure surface design for broadband and angle-independent antireflection,’’ J. Nanophoton. 7, 073594 (2013). https://doi.org/10.1117/1.JNP.7.073594

    Article  ADS  Google Scholar 

  11. I. A. Milekhin, K. V. Anikin, M. Rahaman, E. E. Rodyakina, T. A. Duda, B. M. Saidzhonov, R. B. Vasiliev, V. M. Dzhagan, A. G. Milekhin, S. A. Batsanov, A. K. Gutakovskii, A. V. Latyshev, and D. R. T. Zahn, ‘‘Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays,’’ J. Chem. Phys. 153, 164708 (2020). https://doi.org/10.1063/5.0025572

    Article  ADS  Google Scholar 

  12. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, ‘‘Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,’’ Nano Lett. 12, 3749–3755 (2012). https://doi.org/10.1021/nl301594s

    Article  ADS  Google Scholar 

  13. K. V. Baryshnikova, M. I. Petrov, V. E. Babicheva, and P. A. Belov, ‘‘Plasmonic and silicon spherical nanoparticle antireflective coatings,’’ Sci. Rep. 6, 22136 (2016). https://doi.org/10.1038/srep22136

    Article  ADS  Google Scholar 

  14. A. Shklyaev, L. Bolotov, V. Poborchii, and T. Tada, ‘‘Properties of three-dimensional structures prepared by Ge dewetting from Si(111) at high temperatures,’’ J. Appl. Phys. 117, 205303 (2015). https://doi.org/10.1063/1.4921596

    Article  ADS  Google Scholar 

  15. A. A. Shklyaev and A. E. Budazhapova, ‘‘Ge deposition on Si(100) in the conditions close to dynamic equilibrium between islands growth and their decay,’’ Appl. Surf. Sci. 360B, 1023–1029 (2016). https://doi.org/10.1016/j.apsusc.2015.11.113

    Article  ADS  Google Scholar 

  16. A. A. Shklyaev and A. E. Budazhapova, ‘‘Submicron- and micron-sized SiGe island formation on Si(100) by dewetting,’’ Thin Solid Films 642, 345–351 (2017). https://doi.org/10.1016/j.apsusc.2015.11.113

    Article  ADS  Google Scholar 

  17. A. A. Shklyaev and A. V. Latyshev, ‘‘Surface morphology transformation under high-temperature annealing of Ge layers,’’ Nanoscale Res. Lett. 11, 366 (2016). https://doi.org/10.1186/s11671-016-1588-1

    Article  ADS  Google Scholar 

  18. A. A. Shklyaev, V. A. Volodin, M. Stoffel, H. Rinnert, and M. Vergnat, ‘‘Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting,’’ J. Appl. Phys. 123, 015304 (2018). https://doi.org/10.1063/1.5009720

    Article  ADS  Google Scholar 

  19. A. A. Shklyaev and A. V. Tsarev, ‘‘Broadband antireflection coatings made of resonant submicron- and micron-sized sige particles grown on Si substrates,’’ IEEE Photon. J. 13, 2200212 (2021). https://doi.org/10.1109/JPHOT.2021.3081100

    Article  Google Scholar 

  20. A. A. Shklyaev and A. V. Latyshev, ‘‘Dewetting behavior of Ge layers on SiO\({}_{2}\) under annealing,’’ Sci. Rep. 10, 13759 (2020). https://doi.org/10.1038/s41598-020-70723-6

    Article  Google Scholar 

  21. Rsoft FullWave by SYNOPSYS, version 2020.09-1, single license (2020). https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-fullwave.html. Cited August 4, 2021

  22. Y. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, ‘‘Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001),’’ Phys. Rev. Lett. 65, 1020–1023 (1990). https://doi.org/10.1103/PhysRevLett.65.1020

    Article  ADS  Google Scholar 

  23. A. A. Shklyaev and M. Ichikawa, ‘‘Extremely dense arrays of germanium and silicon nanostructures,’’ Phys.-Usp. 51, 133 (2008). https://doi.org/10.1070/pu2008v051n02abeh006344

    Article  Google Scholar 

  24. A. B. Talochkin, A. A. Shklyaev, and V. I. Mashanov, ‘‘Super-dense array of Ge quantum dots grown on Si(100) by low-temperature MBE,’’ J. Appl. Phys. 115, 144306 (2014). https://doi.org/10.1063/1.4871283

    Article  ADS  Google Scholar 

  25. K. A. Lozovoy, A. G. Korotaev, A. P. Kokhanenko, V. V. Dirko, and A. V. Voitsekhovskii, ‘‘Kinetics of epitaxial formation of nanostructures by Frank–van der Merwe, Volmer–Weber and Stranski–Krastanow growth modes,’’ Surf. Coat. Tech. 384, 125289 (2020). https://doi.org/10.1016/j.surfcoat.2019.125289

    Article  Google Scholar 

  26. G. Capellini, M. de Seta, and F. Evangelisti, ‘‘SiGe intermixing in Ge/Si (100) islands,’’ Appl. Phys. Lett. 78, 303–305 (2001). https://doi.org/10.1063/1.1339263

    Article  ADS  Google Scholar 

  27. A. A. Shklyaev and A. E. Budazhapova, ‘‘Critical conditions for SiGe island formation during Ge deposition on Si(100) at high temperatures,’’ Mater. Sci. Semicond. Proc. 57, 18–23 (2017). https://doi.org/10.1016/j.mssp.2016.09.033

    Article  Google Scholar 

  28. J. T. Robinson, A. Rastelli, O. Schmidt, and O. D. Dubon, ‘‘Global faceting behavior of Strained Ge islands on Si,’’ Nanotechnology 20, 085708 (2009). https://doi.org/10.1088/0957-4484/20/8/085708

    Article  ADS  Google Scholar 

  29. A. A. Shklyaev, K. N. Romanyuk, and S. S. Kosolobov, ‘‘Surface morphology of Ge layers epitaxially grown on bare and oxidized Si(001) and Si(111) substrates,’’ Surf. Sci. 625, 50–56 (2014). https://doi.org/10.1016/j.susc.2014.03.013

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-72-30023. The experiments were carried out using the equipment of the CKP ‘‘NANOSTRUKTURY’’ of the Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences and CKP ‘‘VTAN’’ (ATRC) of the NSU Physics Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shklyaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utkin, D.E., Tsarev, A.V., Utkin, E.N. et al. Broadband Antireflection Coatings Composed of Subwavelength-Sized SiGe Particles. Optoelectron.Instrument.Proc. 57, 494–504 (2021). https://doi.org/10.3103/S8756699021050162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021050162

Keywords:

Navigation