Skip to main content
Log in

Theoretical and Experimental Study of the Electronic and Optical Properties of ZnIn2Se4 Crystals

  • OPTICAL AND ELECTRON SPECTROSCOPY OF CRYSTALS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The electronic properties of ZnIn2Se4 crystals have been studied experimentally by spectral ellipsometry and theoretically (from the first principles) using the density functional theory (DFT). Ellipsometric studies in the energy range of 0.7–6.5 eV made it possible to determine the imaginary and real parts of the dielectric function and optical conductivity, as well as the dispersion of the refractive indices, extinction coefficients, and absorption coefficients, and to estimate the values of the Urbach energy, plasma frequency, and nonlinear optical characteristics of ZnIn2Se4 crystals. The electronic band structure, origin of energy states, optical functions for incident light polarized along the crystal optic axis and perpendicular to it, and partial densities of states projected onto atoms are determined by ab initio calculations. The theoretical results are compared with the experimental data obtained by spectral ellipsometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. N. Georgobiani, S. I. Radautsan, and I. M. Tiginyanu, “Wide gap semiconductors \({{{\text{A}}}^{{{\text{II}}}}}{\text{B}}_{{\text{2}}}^{{{\text{III}}}}{\text{C}}_{{\text{4}}}^{{{\text{VI}}}}\): Optical and photoelectric properties and prospects for applications,” Fiz. Tekh. Poluprovodn. 19 (2), 193–212 (1985) [in Russian].

    Google Scholar 

  2. B. Ganguli, K. Krishna Saha, T. Saha-Dasgupta, A. Mookerjee, and A. K. Bhattacharya, “Electronic and optical properties of ZnIn2Te4,” Phys. B 348 (1–4), 382–390 (2004). https://doi.org/10.1016/j.physb.2004.01.004

  3. G. S. Babu, Y. B. K. Kumar, Y. B. K. Reddy, and V. S. Raja, “Growth and characterization of Cu2SnSe3 thin films,” Mater. Chem. Phys. 96 (2–3), 442–446 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.050

  4. A. H. Reshak, S. Auluck, and I. V. Kityk, “Birefringence, linear and nonlinear second-order optical susceptibilities of a noncentrosymmetric chalcopyrite compound HgGa2S4,” Curr. Opin. Solid State Mater. Sci. 12 (1), 14–18 (2008). https://doi.org/10.1016/j.cossms.2008.07.001

    Article  ADS  Google Scholar 

  5. N. V. Joshi, J. Luengo, and F. Vera, “Optical activity in ZnGa2S4,” Mater. Lett. 61 (8–9), 1926–1928 (2007). https://doi.org/10.1016/j.matlet.2006.07.177

  6. F. Yu, X. Meng, J. Cheng, J. Liu, Y. Yao, and J. Li, “Novel n-type thermoelectric material of ZnIn2Se4,” J. Alloys Compd. 797, 940–944 (2019). https://doi.org/10.1016/j.jallcom.2019.05.238

    Article  Google Scholar 

  7. S. Khawar, N. A. Noor, A. Malik, B. U. Haq, and A. Laref, “Ab-initio investigations of structural, optoelectronic and thermoelectric properties of AIn2Se4 (A = Zn, Cd) spinels,” Mater. Res. Express 6 (8), 086308 (2019). https://doi.org/10.1088/2053-1591/ab1b99

    Article  ADS  Google Scholar 

  8. F. J. Garcia and M. S. Tomar, “n-CdS/p-ZnIn2Se4 thin film solar cell,” Thin Solid Films 69 (2), 137–139 (1980). https://doi.org/10.1016/0040-6090(80)90028-0

    Article  ADS  Google Scholar 

  9. A. E. Delahoy, M. Akhtar, J. Cambridge, L. Chen, R. Govindarajan, S. Guo, and M. J. Romero, “CIGS devices with ZIS, In2S3, and CdS buffer layers,” Proc. 29th IEEE Photovoltaic Specialists Conf., New Orleans, USA, May 19–24, 2002 (IEEE, 2002), pp. 640–643. https://doi.org/10.1109/PVSC.2002.1190646

  10. J. Filipowicz, N. Romeo, and L. Tarricone, “Photoelectrical memory effect in ZnIn2Se4,” Solid State Commun. 38 (7), 619–623 (1981). https://doi.org/10.1016/0038-1098(81)90953-4

    Article  ADS  Google Scholar 

  11. A. A. Vaipolin, Yu. A. Nikolaev, V. Yu. Rud’, Yu. V. Rud’, and E. I. Terukov, “Photosensitive structures based on ZnIn2Se4 single crystals,” Semiconductors 37 (4), 414–416 (2003). https://doi.org/10.1134/1.1568460

    Article  ADS  Google Scholar 

  12. J. A. Beun, R. Nitsche, and M. Lichtensteiger, “Optical and electrical properties of ternary chalcogenides,” Physica 27 (5), 448–452 (1961). https://doi.org/10.1016/0031-8914(61)90002-7

    Article  ADS  Google Scholar 

  13. S.-H. Choe, “Optical energy gaps of undoped and Co-doped ZnIn2Se4 single crystals,” Curr. Appl. Phys. 9 (1), 1–3 (2009). https://doi.org/10.1016/j.cap.2007.10.083

    Article  ADS  Google Scholar 

  14. E. Fortin and F. Raga, “Low temperature photoconductivity of ZnIn2Se4 and CdIn2Se4,” Solid State Commun. 14 (9), 847–850 (1974). https://doi.org/10.1016/0038-1098(74)90148-3

    Article  ADS  Google Scholar 

  15. P. Manca, F. Raga, and A. Spiga, “Photoconductivity of ZnIn2Se4 and ZnIn2Te4,” Phys. Status Solidi A 16 (2), K105–K108 (1973). https://doi.org/10.1002/pssa.2210160243

    Article  ADS  Google Scholar 

  16. P. Manca, F. Raga, and A. Spiga, “Trap distribution and photoconductivity in ZnIn2Se4 and ZnIn2Te4,” Nuovo Cimento B 19 (1), 15–28 (1974). https://doi.org/10.1007/BF02749754

    Article  ADS  Google Scholar 

  17. H. S. Soliman, M. M. El-Nahass, and A. Qusto, “Growth and optical properties of ZnIn2Se4 films,” J. Mater. Sci. 26, 1556–1564 (1991). https://doi.org/10.1007/BF00544664

    Article  ADS  Google Scholar 

  18. K.-N. Ding, Y.-L. Li, and Y.-F. Zhang, “The first-principles calculations of the electronic structures and optical properties of II–III2–VI4 (II = Zn, Cd; III = In; VI = Se, Te),” Chin. J. Struct. Chem. 33 (4), 519–527 (2014). https://caod.oriprobe.com/issues/1498995/toc.htm

  19. S. Reguieg, R. Baghdad, A. Abdiche, M. A. Bezzerrouk, B. Benyoucef, R. Khenata, and S. Bin-Omran, “First-principles study of structural, optical, and thermodynamic properties of ZnIn2X4 (X = Se, Te) compounds with DC or DF structure,” J. Electron. Mater. 46 (1), 401–412 (2017). https://doi.org/10.1007/s11664-016-4831-8

    Article  ADS  Google Scholar 

  20. X. Jiang and W. R. L. Lambrecht, “Electronic band structure of ordered vacancy defect chalcopyrite compounds with formula II–III2–VI4,” Phys. Rev. B 69 (3), 035201 (2004). https://doi.org/10.1103/PhysRevB.69.035201

    Article  ADS  Google Scholar 

  21. E. Grilli, M. Guzzi, and R. Molteni, “Luminescence of ZnIn2Se4 crystals,” Phys. Status Solidi A 37 (2), 399–406 (1976). https://doi.org/10.1002/pssa.2210370205

    Article  ADS  Google Scholar 

  22. M. Guzzi and E. Grilli, “Localized levels and luminescence of AB2X4 semiconducting compounds,” Mater. Chem. Phys. 11 (3), 295–304 (1984). https://doi.org/10.1016/0254-0584(84)90063-4

    Article  Google Scholar 

  23. A. Cingolani, M. Ferrara, A. Minafra, and F. Adduci, “Photoelectronic properties of ZnIn2S4,” Phys. Status Solidi A 23 (2), 367–371 (1974). https://doi.org/10.1002/pssa.2210230204

    Article  ADS  Google Scholar 

  24. Sh. Shionoya and Yu. Tamoto, “Luminescence of ZnIn2S4 and ZnIn2S4:Cu single crystals,” J. Phys. Soc. Jpn. 19 (7), 1142–1149 (1964). https://doi.org/10.1143/JPSJ.19.1142

    Article  ADS  Google Scholar 

  25. Sh. Shionoya and A. Ebina, “Fundamental optical properties of ZnIn2S4 single crystals,” J. Phys. Soc. Jpn. 19 (7), 1150–1156 (1964). https://doi.org/10.1143/JPSJ.19.1150

    Article  ADS  Google Scholar 

  26. T. G. Kerimova, I. A Mamedova, Z. Kadiroglu, N. A. Abdullayev, and M. Feldman, “Temperature dependence of photoluminescence of ZnIn2Se4,” Azerb. J. Phys. 24 (3), 33–35 (2018). http://physics.gov.az/physart/122_2018_03_33_en.pdf

  27. I. A. Mamedova, “Photoluminescence properties of ZnIn2Se4,” Azerb. J. Phys. 27 (2), 8–11 (2021). http://physics.gov.az/physart/286_2021_02_08_en.pdf

  28. I. A. Mamedova, Z. A. Jahangirli, E. H. Alizade, T. G. Kerimova, T. G. Mammadov, and N. A. Abdullayev, “Ab initio calculations and experimental study of the electronic properties of CdGa2Se4 single crystals by spectral ellipsometry,” Phys. Wave Phenom. 30 (5), 306–313 (2022). https://doi.org/10.3103/S1541308X22050077

    Article  ADS  Google Scholar 

  29. Z. A. Jahangirli, R. G. Veliyev, Z. I. Badalova, R. G. Seyidov, E. H. Alizade, T. G. Mammadov, and N. A. Abdullayev, “Electronic properties of magnetic semiconductor compounds TlFeS2 and TlFeSe2,” Phys. Wave Phenom. 31 (2), 84–91 (2023). https://doi.org/10.3103/S1541308X2302005X

    Article  ADS  Google Scholar 

  30. P. Hoenberg and W. Khon, “Inhomogeneous electron gas,” Phys. Rev. 136 (3), 864–871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  MathSciNet  Google Scholar 

  31. O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B 12 (8), 3060–3083 (1975). https://doi.org/10.1103/PhysRevB.12.3060

    Article  ADS  Google Scholar 

  32. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Waves + Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. Technol., Vienna, 2008).

  33. J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23 (10), 5048–5079 (1981). https://doi.org/10.1103/PhysRevB.23.5048

    Article  ADS  Google Scholar 

  34. H. Hahn, G. Frank, W. Kligler, A. D. Störger, and G. Störger, “Untersuchungen über ternäre Chalkogenide. VI. Über Ternäre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber,” Z. Anorg. Allg. Chem. 279 (5–6), 241–270 (1955). https://doi.org/10.1002/zaac.19552790502

  35. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15 (2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  ADS  Google Scholar 

  36. P. R. Jubu, O. S. Obaseki, A. Nathan-Abutu, F. K. Yam, Y. Yusof, and M. B. Ochang, “Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–vis optical diffuse reflectance data,” Results Opt. 9, 100273 (2022). https://doi.org/10.1016/j.rio.2022.100273

    Article  Google Scholar 

  37. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Hoboken, NJ, 2007), Chap. 1.3, p. 5.

    Book  Google Scholar 

  38. A. V. Rzhanov, K. K. Svitashev, A. I. Semenenko, L. V. Semenenko, and V. K. Sokolov, Principles of Ellipsometry (Nauka, Novosibirsk, 1979), Sect. 1.4, p. 46 [in Russian].

  39. M. Isik, I. Guler, and N. Gasanly, “Exploring the linear and nonlinear optical behavior of (TlInS2)0.75(TlInSe2)0.25: Insights from ellipsometry measurements,” Phys. B: Condens. Matter 669, 415294 (2023). https://doi.org/10.1016/j.physb.2023.415294

    Article  Google Scholar 

  40. M. Kranjčec, I. P. Studenyak, and M. V. Kurik, “On the Urbach rule in non-crystalline solids,” J. Non-Cryst. Solids 355 (1), 54–57 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.03.051

    Article  ADS  Google Scholar 

  41. M. Nagaraja, P. Raghu, H. M. Mahesh, and J. Pattar, “Structural, optical and Urbach energy properties of ITO/CdS and ITO/ZnO/CdS bi-layer thin films,” J Mater. Sci.: Mater. Electron. 32, 8976–8982 (2021). https://doi.org/10.1007/s10854-021-05568-4

    Article  Google Scholar 

  42. S. H. Wemple and M. DiDomenico, Jr., “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3 (4), 1338–1351 (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  ADS  Google Scholar 

  43. Y. Caglar, S. Ilican, and M. Caglar, “Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous SnO2 thin films,” Eur. Phys. J. B 58, 251–256 (2007). https://doi.org/10.1140/epjb/e2007-00227-y

    Article  ADS  Google Scholar 

  44. S. Rajeh, A. Barhoumi, A. Mhamdi, G. Leroy, B. Duponchel, M. Amlouk, and S. Guermazi, “Structural, morphological, optical and opto-thermal properties of Ni-doped ZnO thin films using spray pyrolysis chemical technique,” Bull. Mater. Sci. 39, 177–186 (2016). https://doi.org/10.1007/s12034-015-1132-4

    Article  Google Scholar 

  45. S. Belgacem and R. Bennaceur, “Propriétés optiques des couches minces de SnO2 et CuInS2 airless spray,” Rev. Phys. Appl. (Paris) 25 (12), 1245–1258 (1990). https://doi.org/10.1051/rphysap:0199000250120124500

    Article  Google Scholar 

  46. G. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47 (3), 447–510 (1998). https://doi.org/10.1080/000187398243537

  47. Z. R. Khan, K. V. Chandekar, A. Khan, N. Akhter, M. A. Sayed, M. Shkir, H. Algarni, and S. AlFaify, “An impact of novel Terbium (Tb) doping on key opto-nonlinear optical characteristics of spray pyrolyzed NiO nanostructured films for opto-nonlinear applications,” Mater. Sci. Semicond. Process. 138, 106260 (2022). https://doi.org/10.1016/j.mssp.2021.106260

Download references

ACKNOWLEDGMENTS

We are grateful to A.S. Bondyakov (Joint Institute for Nuclear Research, Russia), to D.A. Kuliev (Institute of Physics of the Ministry of Science and Education of the Republic of Azerbaijan), and to all employees of the Data Center of the Institute of Physics of the Ministry of Science and Education of the Republic of Azerbaijan for the supplied resources and technical support of theoretical calculations.

Funding

This study was supported by the Science Development Foundation under the President of the Republic of Azerbaijan (grant no. EIF-BGM-3-BRFTF-2+/2017-15/02/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Abdullayev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedova, I.A., Jahangirli, Z.A., Alizade, E.G. et al. Theoretical and Experimental Study of the Electronic and Optical Properties of ZnIn2Se4 Crystals. Phys. Wave Phen. 32, 150–159 (2024). https://doi.org/10.3103/S1541308X24700092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X24700092

Keywords:

Navigation