Skip to main content
Log in

Tunable Three-Channel Mesoscopic Demultiplexer Based on Detuned Stubs

  • INTERACTION OF RADIATION WITH MATTER
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

We study analytically and numerically the possibility of implementing a simple mesoscopic demultiplexer based on bound states in the continuum (BICs), induced transparency, and Fano resonances. The demultiplexer is made of a Y-shaped waveguide with an input line and two output lines where each output line contains two stubs grafted on two different sites in a U-shape far from the input line. The BICs are obtained for specific values of the lengths of the stubs of U-shaped structures and the segment separating them. By detuning the two stubs slightly in an appropriate way, BIC transforms into Fano or electromagnetic induced transparency (EIT) resonances. We give closed-form expressions of the geometrical parameters that allow a selective transfer of the given state in the first waveguide without perturbing the second waveguide. The effect of temperature on the transmission resonances is also examined using Landauer–Buttiker formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Y. Srivastava and A. Widom, “Quantum electrodynamic processes in electrical engineering circuits,” Phys. Rep. 148 (1), 1–65 (1987). https://doi.org/10.1016/0370-1573(87)90020-2

    Article  ADS  Google Scholar 

  2. F. A. Buot, “Mesoscopic physics and nanoelectronics: Nanoscience and nanotechnology,” Phys. Rep. 234 (2–3), 73–174 (1993). https://doi.org/10.1016/0370-1573(93)90097-W

  3. X.-F. Xu and H.-Y. Fan, “Adiabatic invariant of electron motion in slowly varying magnetic field studied with the squeezing mechanism in entangled state representation,” Optik 135, 383–388 (2017). https://doi.org/10.1016/j.ijleo.2017.01.036

    Article  ADS  Google Scholar 

  4. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, “Observation of h/e Aharonov–Bohm oscillations in normal-metal rings,” Phys. Rev. Lett. 54 (25), 2696–2699 (1985). https://doi.org/10.1103/PhysRevLett.54.2696

    Article  ADS  Google Scholar 

  5. J. Liu, W. X. Gao, K. Ismail, K. Y. Lee, J. M. Hong, and S. Washburn, “Correlations between Aharonov–Bohm effects and one-dimensional subband populations in GaAs/AlxGa1−xAs rings,” Phys. Rev. B 48 (20), 15148–15157 (1993). https://doi.org/10.1103/PhysRevB.48.15148

    Article  ADS  Google Scholar 

  6. L. Banszerus, B. Frohn, T. Fabian, S. Somanchi, A. Epping, M. Müller, D. Neumaier, K. Watanabe, T. Taniguchi, F. Libisch, B. Beschoten, F. Hassler, and C. Stampfer, “Observation of the spin-orbit gap in bilayer graphene by one-dimensional ballistic transport,” Phys. Rev. Lett. 124 (17), 177701 (2020). https://doi.org/10.1103/PhysRevLett.124.177701

    Article  ADS  Google Scholar 

  7. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102 (5), 053901 (2009). https://doi.org/10.1103/PhysRevLett.102.053901

    Article  ADS  Google Scholar 

  8. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124 (6), 1866–1878 (1961). https://doi.org/10.1103/PhysRev.124.1866

    Article  ADS  MATH  Google Scholar 

  9. K.-K. Voo and S. C. Chon, “Fano resonance in transport through a mesoscopic two-lead ring,” Phys. Rev. B 72 (16), 165307 (2005). https://doi.org/10.1103/PhysRevB.72.165307

    Article  ADS  Google Scholar 

  10. X.-Q. Wang, S.-F. Zhang, C. Jiang, G.-Y. Yi, and W.-J. Gong, “Fano antiresonance realized by Majorana bound states coupled to one quantum-dot system,” Phys. E 104, 1–5 (2018). https://doi.org/10.1016/j.physe.2018.07.005

    Article  Google Scholar 

  11. C.-X. Zhang, X.-H. Ding, R. Wang, Y.-Q. Zhou, and L.-M. Kong, “Fano resonance and wave transmission through a chain structure with an isolated ring composed of defects,” Chin. Phys. B 21 (3), 034202 (2012). https://doi.org/10.1088/1674-1056/21/3/034202

    Article  ADS  Google Scholar 

  12. J. von Neumann and E. Wigner, “Über das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 467–470 (1929). https://doi.org/10.1007/978-3-662-02781-3_20

    Article  MATH  Google Scholar 

  13. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016). https://doi.org/10.1038/natrevmats.2016.48

    Article  ADS  Google Scholar 

  14. H. Nakamura, N. Hatano, S. Garmon, and T. Petroky, “Quasibound states in the continuum in a two channel quantum wire with an adatom,” Phys. Rev. Lett. 99 (21), 210404 (2007). https://doi.org/10.1103/PhysRevLett.99.210404

    Article  ADS  Google Scholar 

  15. M. L. L. de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67 (19), 195335 (2003). https://doi.org/10.1103/PhysRevB.67.195335

    Article  ADS  Google Scholar 

  16. N. Moiseyev, “Suppression of feshbach resonance widths in two-dimensional waveguides and quantum dots: A lower bound for the number of bound states in the continuum,” Phys. Rev. Lett. 102 (16), 167404 (2009). https://doi.org/10.1103/PhysRevLett.102.167404

    Article  ADS  Google Scholar 

  17. L. Fonda and R. G. Newton, “Theory of resonance reactions,” Ann. Phys. 10 (4), 490–515 (1960). https://doi.org/10.1016/0003-4916(60)90119-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32 (6), 3231–3242 (1985). https://doi.org/10.1103/PhysRevA.32.3231

    Article  ADS  Google Scholar 

  19. N. Prodanović, V. Milanović, Z. Ikonić, D. Indjin, and P. Harrison, “Bound states in continuum: Quantum dots in a quantum well,” Phys. Lett. A 377 (34–36), 2177–2181 (2013). https://doi.org/10.1016/j.physleta.2013.05.051

  20. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tunnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111 (24), 240403 (2013). https://doi.org/10.1103/PhysRevLett.111.240403

    Article  ADS  Google Scholar 

  21. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82 (3), 2257–2298 (2010). https://doi.org/10.1103/RevModPhys.82.2257

    Article  ADS  Google Scholar 

  22. C. Benjamin and A. M. Jayannavar, “Features in evanescent Aharonov–Bohm interferometry,” Phys. Rev. B 68 (8), 085325 (2003). https://doi.org/10.1103/PhysRevB.68.085325

    Article  ADS  Google Scholar 

  23. A. Fuhrer, P. Brusheim, T. Ihn, M. Sigrist, K. Ensslin, W. Wegscheider, and M. Bichler, “Fano effect in a quantum-ring–quantum-dot system with tunable coupling,” Phys. Rev. B 73 (20), 205326 (2006). https://doi.org/10.1103/PhysRevB.73.205326

    Article  ADS  Google Scholar 

  24. K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov–Bohm interferometer,” Phys. Rev. Lett. 88 (25), 256806 (2002). https://doi.org/10.1103/PhysRevLett.88.256806

    Article  ADS  Google Scholar 

  25. K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Mesoscopic Fano effect in a quantum dot embedded in an Aharonov–Bohm ring,” Phys. Rev. B 68 (23), 235304 (2003). https://doi.org/10.1103/PhysRevB.68.235304

    Article  ADS  Google Scholar 

  26. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B 70 (3), 035319 (2004). https://doi.org/10.1103/PhysRevB.70.035319

    Article  ADS  Google Scholar 

  27. M. L. L. de Guevara and P. A. Orellana, “Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum,” Phys. Rev. B 73 (20), 205303 (2006). https://doi.org/10.1103/PhysRevB.73.205303

    Article  ADS  Google Scholar 

  28. H. Lu, R. Lu, and B. F. Zhu, “Tunable Fano effect in parallel-coupled double quantum dot system,” Phys. Rev. B 71 (23), 235320 (2005). https://doi.org/10.1103/PhysRevB.71.235320

    Article  ADS  Google Scholar 

  29. C.-R. Liu, L. Huang, H. Luo, and Y.-C. Lai, “Spin Fano resonances and control in two-dimensional mesoscopic transport,” Phys. Rev. Appl. 13 (3), 034061 (2020). https://doi.org/10.1103/PhysRevApplied.13.034061

    Article  ADS  Google Scholar 

  30. P.-Y. Yang and W.-M. Zhang, “Buildup of Fano resonances in the time domain in a double quantum dot Aharonov–Bohm interferometer,” Phys. Rev. B 97 (5), 054301 (2018). https://doi.org/10.1103/PhysRevB.97.054301

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Zhu, “Spin-dependent Fano resonance induced by a conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide,” J. Phys.: Condens. Matter 25 (3), 036001 (2013). https://doi.org/10.1088/0953-8984/25/3/036001

    Article  ADS  Google Scholar 

  32. R. Zhu, J.-H. Dai, and Y. Guo, “Fano resonance in the nonadiabatically pumped shot noise of a time-dependent quantum well in a two-dimensional electron gas and graphene,” J. Appl. Phys. 17 (16), 164306 (2015). https://doi.org/10.1063/1.4919421

    Article  ADS  Google Scholar 

  33. I. Quotane, E. H. El Boudouti, and B. Djafari-Rouhani, “Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal,” Phys. Rev. B 97 (2), 024304 (2018). https://doi.org/10.1103/PhysRevB.97.024304

    Article  ADS  Google Scholar 

  34. M. Amrani, I. Quotane, C. Ghouila-Houri, E. H. El Boudouti, L. Krutyansky, B. Piwakowski, P. Pernod, A. Talbi, and B. Djafari-Rouhani, “Experimental evidence of the existence of bound states in the continuum and Fano resonances in solid-liquid layered media,” Phys. Rev. Appl. 15 (5), 054046 (2021). https://doi.org/10.1103/PhysRevApplied.15.054046

    Article  ADS  Google Scholar 

  35. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). https://doi.org/10.1038/nmat2810

    Article  ADS  Google Scholar 

  36. E. Melik-Gaykazyan, K. Koshelev, J.-H. Choi, S. S. Kruk, A. Bogdanov, H.-G. Park, and Yu. Kivshar, “From Fano to quasi-BIC resonances in individual dielectric nanoantennas,” Nano Lett. 21 (4), 1765–1771 (2021). https://doi.org/10.1021/acs.nanolett.0c04660

    Article  ADS  Google Scholar 

  37. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66 (20), 2593–2596 (1991). https://doi.org/10.1103/PhysRevLett.66.2593

    Article  ADS  Google Scholar 

  38. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77 (2), 633–673 (2005). https://doi.org/10.1103/RevModPhys.77.633

    Article  ADS  Google Scholar 

  39. H. Li, V. A. Sautenkov, Yu. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80 (2), 023820 (2009). https://doi.org/10.1103/PhysRevA.80.023820

    Article  ADS  Google Scholar 

  40. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45 (3), 471–503 (1998). https://doi.org/10.1080/09500349808231909

    Article  ADS  Google Scholar 

  41. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64 (10), 1107–1110 (1990). https://doi.org/10.1103/PhysRevLett.64.1107

    Article  ADS  Google Scholar 

  42. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50 (7), 36–44 (1997). https://doi.org/10.1063/1.881806

    Article  Google Scholar 

  43. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65 (23), 235112 (2002). https://doi.org/10.1103/PhysRevB.65.235112

    Article  ADS  Google Scholar 

  44. M. Lawrence, D. R. Barton, III, J. Dixon, J.-H. Song, J. van de Groep, M. L. Brongersma, and J. A. Dionne, “High quality factor phase gradient metasurfaces,” Nat. Nanotechnol. 15, 956–961 (2020). https://doi.org/10.1038/s41565-020-0754-x

    Article  ADS  Google Scholar 

  45. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98 (21), 213904 (2007). https://doi.org/10.1103/PhysRevLett.98.213904

    Article  ADS  Google Scholar 

  46. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96 (12), 123901 (2006). https://doi.org/10.1103/PhysRevLett.96.123901

    Article  ADS  Google Scholar 

  47. E. H. El Boudouti, T. Mrabti, H. Al-Wahsh, B. Djafari-Rouhani, A. Akjouj, and L. Dobrzynski, “Transmission gaps and Fano resonances in an acoustic waveguide: Analytical model,” J. Phys.: Condens. Matter 20 (25), 255212 (2008). https://doi.org/10.1088/0953-8984/20/25/255212

    Article  ADS  Google Scholar 

  48. A. Santillán and S. I. Bozhevolnyi, “Acoustic transparency and slow sound using detuned acoustic resonators,” Phys. Rev. B 84 (6), 064304 (2011). https://doi.org/10.1103/PhysRevB.84.064304

    Article  ADS  Google Scholar 

  49. T. Gu, Y. Cheng, Zh. Wen, E. H. El Boudouti, Y. Jin, Y. Li, and B. Djafari-Rouhani, “Induced transparency based subwavelength acoustic demultiplexers, ” J. Phys. D: Appl. Phys. 54 (17), 175301 (2021). https://doi.org/10.1088/1361-6463/abe07c

    Article  ADS  Google Scholar 

  50. T. Yang, X. Liu, and J. Zhou, “Terahertz polarization conversion in an electromagnetically induced transparency (EIT)-like metamaterial,” Ann. Phys. 533 (3), 2000528 (2021). https://doi.org/10.1002/andp.202000528

    Article  Google Scholar 

  51. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018). https://doi.org/10.1016/j.carbon.2017.10.035

    Article  Google Scholar 

  52. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20 (17), 18994–18999 (2012). https://doi.org/10.1364/OE.20.018994

    Article  ADS  Google Scholar 

  53. J. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, and D. Qi, “Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics,” Opt. Commun. 482, 126563 (2021). https://doi.org/10.1016/j.optcom.2020.126563

    Article  Google Scholar 

  54. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). https://doi.org/10.1038/nmat2495

    Article  ADS  Google Scholar 

  55. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29 (6), 626–628 (2004). https://doi.org/10.1364/OL.29.000626

    Article  ADS  Google Scholar 

  56. M. Tomita, K. Totsuka, R. Hanamura and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26 (4), 813–818 (2009). https://doi.org/10.1364/JOSAB.26.000813

    Article  ADS  Google Scholar 

  57. T. Wang, Y.-Q. Hu, C.-G. Du, and G.-L. Long, “Multiple EIT and EIA in optical microresonators,” Opt. Express 27 (5), 7344–7353 (2019). https://doi.org/10.1364/OE.27.007344

    Article  ADS  Google Scholar 

  58. Y. Xu, J. Li, and M. Kong, “Various resonance lineshapes available in a single microring resonator,” J. Opt. 23 (4), 045801 (2021). https://doi.org/10.1088/2040-8986/abdf33

    Article  ADS  Google Scholar 

  59. I. Rotter and A. F. Sadreev, “Zeros in single-channel transmission through double quantum dots,” Phys. Rev E 71 (4), 046204 (2005). https://doi.org/10.1103/PhysRevE.71.046204

    Article  ADS  MathSciNet  Google Scholar 

  60. I. Rotter and J. P. Bird, “A review of progress in the physics of open quantum systems: Theory and experiment,” Rep. Prog. Phys. 78 (11), 114001 (2015). https://doi.org/10.1088/0034-4885/78/11/114001

    Article  ADS  Google Scholar 

  61. H. Al-Wahsh, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and L. Dobrzynski, “Transmission gaps and sharp resonant states in the electronic transport through a simple mesoscopic device,” Phys. Rev. B 75 (12), 125313 (2007). https://doi.org/10.1103/PhysRevB.75.125313

    Article  ADS  Google Scholar 

  62. B. Djafari-Rouhani, H. Al-Wahsh, A. Akjouj, and L. Dobrzynski, “One-dimensional magnonic circuits with size-tunable band gaps and selective transmission,” J. Phys.: Conf. Ser. 303, 012017 (2011). https://doi.org/10.1088/1742-6596/303/1/012017

    Article  Google Scholar 

  63. T. Mrabti, Z. Labdouti, A. Mouadili, E. H. El Boudouti, and B. Djafari-Rouhani, “Aharonov–Bohm-effect induced transparency and reflection in mesoscopic rings side coupled to a quantum wire,” Phys. E 116, 113770 (2020). https://doi.org/10.1016/j.physe.2019.113770

    Article  Google Scholar 

  64. Z. Labdouti, T. Mrabti, A. Mouadili, E. H. El Boudouti, F. Fethi, and B. Djafari-Rouhani, “Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs,” Chin. Phys. B 29 (12), 127301 (2020). https://doi.org/10.1088/1674-1056/abad23

    Article  ADS  Google Scholar 

  65. A. Mouadili, E. H. El Boudouti, A. Akjouj, H. Al-Wahsh, B. Djafari-Rouhani, and L. Dobrzynski, “Y‑shaped magnonic demultiplexer using induced transparency resonances,” AIP Adv. 9 (3), 035011 (2019). https://doi.org/10.1063/1.5080350

    Article  ADS  Google Scholar 

  66. A. Mouadili, E. H. El Boudouti, A. Soltani, A. Talbi, K. Haddadi, A. Akjouj, and B. Djafari-Rouhani, “Photonic demultiplexer based on electromagnetically induced transparency resonances,” J. Phys. D: Appl. Phys. 52 (7), 075101 (2019). https://doi.org/10.1088/1361-6463/aaf11b

    Article  ADS  Google Scholar 

  67. A. Mouadili, S. Khattou, M. Amrani, E. H. El Boudouti, N. Fettouhi, A. Talbi, A. Akjouj, and B. Djafari-Rouhani, “Y-shaped demultiplexer photonic circuits based on detuned stubs: Application to radiofrequency domain,” Photonics 8 (9), 386 (2021). https://doi.org/10.3390/photonics8090386

    Article  Google Scholar 

  68. L. Dobrzynski, E. H. El Boudouti, A. Akjouj, Y. Pennec, H. Al-Wahsh, G. Lévêque, and B. Djafari-Rouhani, Phononics: Interface Transmission Tutorial Book Series (Elsevier, 2017). https://doi.org/10.1016/C2015-0-06475-9

  69. J. O. Vasseur, A. Akjouj, L. Dobrzynski, B. Djafari-Rouhani, and E. H. El Boudouti, “Photon, electron, magnon, phonon and plasmon mono-mode circuits,” Surf. Sci. Rep. 54 (1–4), 1–156 (2004). https://doi.org/10.1016/j.surfrep.2004.04.001

  70. R. C. H. Ooi and C. H. Kam, “Controlling quantum resonances in photonic crystals and thin films with electromagnetically induced transparency,” Phys. Rev. B 81 (19), 195119 (2010). https://doi.org/10.1103/PhysRevB.81.195119

    Article  ADS  Google Scholar 

  71. B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100 (2), 021108 (2012). https://doi.org/10.1063/1.3675571

    Article  ADS  Google Scholar 

  72. R. Landauer, “Spatial variation of currents and fields due to localized scatterers in metallic conduction,” IBM J. Res. Dev. 1 (3), 223–231 (1957). https://doi.org/10.1147/rd.13.0223

    Article  MathSciNet  Google Scholar 

  73. M. Büttiker, “Absence of backscattering in the quantum Hall effect in multiprobe conductors,” Phys. Rev. B 38 (14), 9375–9389 (1988). https://doi.org/10.1103/PhysRevB.38.9375

    Article  ADS  Google Scholar 

  74. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  75. Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, 2001).

    Google Scholar 

  76. M. Cassé, Z. D. Kvon, G. M. Gusev, E. B. Olshanetskii, L. V. Litvin, A. V. Plotnikov, D. K. Maude, and J. C. Portal, “Temperature dependence of the Aharonov–Bohm oscillations and the energy spectrum in a single-mode ballistic ring,” Phys. Rev. B 62 (4), 2624–2629 (2000). https://doi.org/10.1103/PhysRevB.62.2624

    Article  ADS  Google Scholar 

  77. V. Vargiamidis and H. M Polatoglou, “Temperature dependence of the Fano effect in quantum wires with short- and finite-range impurities,” Phys. Rev. B 75 (15), 153308 (2007) https://doi.org/10.1103/PhysRevB.75.153308

    Article  ADS  Google Scholar 

  78. V. Vargiamidis and H. M Polatoglou, “Fano resonance and persistent current in mesoscopic open rings: Influence of coupling and Aharonov–Bohm flux,” Phys. Rev. B 74 (23), 235323 (2006). https://doi.org/10.1103/PhysRevB.74.235323

    Article  ADS  Google Scholar 

  79. C. W. J. Beenakker and H. van Houten, “Quantum transport in semiconductor nanostructures,” Solid State Phys. 44, 1–228 (1991). https://doi.org/10.1016/S0081-1947(08)60091-0

    Article  Google Scholar 

  80. Nanostructure Physics and Fabrication, Ed. by M. A. Reed and W. P. Kirk (Academic, London, 1989). ISBN 978-0-12-585000-1.

    Google Scholar 

  81. L. P. Kouwenhoven, F. W. J. Hekking, B. J. van Wees, C. J. P. M. Harmans, C. E. Timmering, and C. T. Foxon, “Transport through a finite one-dimensional crystal,” Phys. Rev. Lett. 65 (3), 361–364 (1990). https://doi.org/10.1103/PhysRevLett.65.361

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mrabti.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The text was submitted by the author in English.

APPENDIX

APPENDIX

1.1 DEMULTIPLEXER BASED ON MIXED STRUCTURES

We consider a mixed demultiplexer with one input and two outputs composed of a cross-shaped and a U‑shaped structures, respectively (Fig. A1). The first output contains a cross structure made of two stubs of lengths d1 and d2 placed at the same position labeled 2 and connected to the input by the segment of length d5. The second output contains the U-shaped structure made of two stubs of lengths d3 and d4 placed, respectively, at the sites 3 and 4 at a distance d6 and d6 + d0 from input line 1. It’s worth mentioning that the cross resonator in the first output exhibits only EIT resonances, whilst the U-shaped resonator in the second output present both Fano and EIT resonances.

Fig. A1.
figure 10

(Color online) Schematic illustration of the Y-shaped demultiplexer based on combined structures of U- and cross-structures. The geometric parameters are defined in the text.

In this section, the cross structure connected to the first output exhibits EIT resonance while the U-shaped structure in the second output presents the Fano resonance. By choosing appropriately the different lengths constituting the mixed demultiplexer, one can achieve a mixed filtering where the first output presents EIT resonance and the second output exhibits Fano resonance.

Therefore, the lengths of the segments and stubs should verify the following conditions:

$${{d}_{1}} = \frac{{{{d}_{0}}}}{2} - \frac{\delta }{2},$$
(31)
$${{d}_{2}} = {{d}_{3}} = {{d}_{4}} = \frac{{{{d}_{0}}}}{2} + \frac{\delta }{2},$$
(32)
$${{d}_{5}} = \frac{{{{d}_{0}}}}{4} + \frac{\delta }{4},$$
(33)
$${{d}_{6}} = \frac{{{{d}_{0}}}}{4},$$
(34)
$$d_{0}^{'} = {{d}_{0}} + 2\delta ,$$
(35)

where d0 = d1 + d2 is fixed.

Figure A2 shows the numerical results of the transmission coefficients T1 and T2 along the first and the second output, respectively, as well as the curves of reflection coefficient R at the input as a function of the dimensionless energy κ for three values of δ. It can be seen that the resonance of EIT type is formed at output 1 (red curves) while the Fano type is realized at output 2 (blue curves). Figure A2 exhibits the behavior of EIT resonance in the first output that occurs at the same reduced energy for different values of δ as d0 fixed. On the other side, the position of the Fano resonance in the second output varies as function of δ. For δ = 0.1 (Fig. A2a), the Fano resonance appears at the left side of the EIT resonance. Whilst, for δ = −0.1 (Fig. A2c), the Fano resonance arises at the right side of the EIT resonance. Moreover, the width of both resonances changes when the sign of δ changes. For δ = 0 (Fig. A2b), both resonances fall at the same dimensionless energy (κ = 2π) and appear with zero width, giving rise to BICs. These modes correspond to stationary waves in the cross and U stubs on both outputs and do not interact with the semi-infinite wires (continuum states) surrounding them.

Fig. A2.
figure 11

(Color online) The same as in Fig. 7, but for the structure depicted in Fig. A1.

Similarly, one can get also EIT–EIT resonances; in this case, we should satisfy the following conditions:

$${{d}_{1}} = \frac{{{{d}_{0}}}}{2} - \frac{\delta }{2},$$
(36)
$${{d}_{2}} = \frac{{{{d}_{0}}}}{2} + \frac{\delta }{2},$$
(37)
$${{d}_{3}} = \frac{{{{d}_{0}}}}{2},$$
(38)
$${{d}_{4}} = \frac{{{{d}_{0}}}}{2} + \delta ,$$
(39)
$${{d}_{5}} = \frac{{{{d}_{0}}}}{4} + \frac{\delta }{4},$$
(40)
$${{d}_{6}} = \frac{{{{d}_{0}}}}{4},$$
(41)
$$d_{0}^{'} = {{d}_{0}} + \delta .$$
(42)

The numerical results are almost the same to those curves presented in Fig. 5. Therefore, we prefer to avoid giving the EIT–EIT figure.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labdouti, Z., Quotane, I., Mouadili, A. et al. Tunable Three-Channel Mesoscopic Demultiplexer Based on Detuned Stubs. Phys. Wave Phen. 31, 238–251 (2023). https://doi.org/10.3103/S1541308X23040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23040064

Keywords:

Navigation