Skip to main content
Log in

Interaction of Methylene Blue Dye with the Surface of a Polymer Membrane during Soaking in an Aqueous Solution: Dependence on the Isotopic Composition of Water

  • OPTICAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

It is known that swelling of Nafion polymer membrane in water is accompanied by unwinding of polymer fibers into the bulk of the surrounding liquid. This effect is controlled by the deuterium content in water. In this paper, we report the results of studying the adsorption dynamics of methylene blue (MB) dye on the Nafion surface for MS solutions based on natural water (deuterium content 157 ppm, unwinding effect occurs) and based on deuterium-depleted water (DDW; deuterium content 3 ppm, unwinding effect is absent). In addition, we investigated the water desorption dynamics upon drying a Nafion polymer membrane after soaking in an MB solution based on natural water and DDW. It turned out that the MB adsorption rate in MB solutions based on natural water is lower than in the DDW-based MB solutions. Finally, the water desorption upon drying was found to be accompanied by a change in the Nafion absorption spectrum. Specifically, upon water desorption, the low-frequency band of the doublet in the range from 600 to 800 nm in the absorption spectrum of Nafion with MB particles on its surface undergoes transformation with a shift to the short-wavelength region. This transition occurred earlier for Nafion soaked in a DDW-based MB solution. The found effects are related to the retardation of diffusion processes in the layer of polymer fibers unwound near the membrane surface. Thus, changing the deuterium content in the aqueous solution in which the polymer membrane is swollen by very small steps (from 3 to 157 ppm), one can control the dynamics of adsorption and desorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. A. Mauritz and R. B. Moore, “State of understanding of Nafion,” Chem. Rev. 104 (10), 4535–4585 (2004). https://doi.org/10.1021/cr0207123

    Article  Google Scholar 

  2. N. A. Belov, D. S. Pashkevich, A. Yu. Alentiev, and A. Tressaud, “Effect of direct fluorination on the transport properties and swelling of polymeric materials: A review,” Membranes 11 (9), 713 (2021). https://doi.org/10.3390/membranes11090713

    Article  Google Scholar 

  3. A. M. Samsudin, M. Bodner, and V. Hacker, “A brief review of poly(vinyl alcohol)-based anion exchange membranes for alkaline fuel cells,” Polymers 14 (17), 3565 (2022). https://doi.org/10.3390/polym14173565

    Article  Google Scholar 

  4. C. Tsioptsias, G.-R. P. Foukas, S.-M. Papaioannou, E. Tzimpilis, and I. Tsivintzelis, “On the thermochemical transition depression of cellulose acetate composite membranes,” Polymers 14 (16), 3434 (2022). https://doi.org/10.3390/polym14163434

    Article  Google Scholar 

  5. D. N. Chausov, V. V. Smirnova, D. E. Burmistrov, R. M. Sarimov, A. D. Kurilov, M. E. Astashev, O. V. Uvarov, M. V. Dubinin, V. A. Kozlov, M. V. Vedunova, M. B. Rebezov, A. S. Semenova, A. B. Lisitsyn, and S. V. Gudkov, “Synthesis of a novel, biocompatible and bacteriostatic borosiloxane composition with silver oxide nanoparticles,” Materials 15 (2), 527 (2022). https://doi.org/10.3390/ma15020527

    Article  ADS  Google Scholar 

  6. M. E. Astashev, R. M. Sarimov, D. A. Serov, T. A. Matveeva, A. V. Simakin, D. N. Ignatenko, D. E. Burmistrov, V. V. Smirnova, A. D. Kurilov, V. I. Mashchenko, P. I. Ivashkin, O. V. Uvarov, V. V. Voronov, A. V. Shkirin, E. V. Nagaev, A. D. Efimov, V. E. Ivanov, V. I. Bruskov, M. V. Dubinin, M. G. Sharapov, V. A. Kozlov, N. F. Bunkin, M. Yu. Volkov, M. V. Vedunova, M. B. Rebezov, A. A. Semenova, A. B. Lisitsyn, A. P. Glinushkin, D. N. Chausov, and S. V. Gudkov, “Antibacterial behavior of organosilicon composite with nano aluminum oxide without influencing animal cells,” React. Funct. Polym. 170, 105143 (2022). https://doi.org/10.1016/j.reactfunctpolym.2021.105143

    Article  Google Scholar 

  7. D. E. Burmistrov, A. V. Simakin, V. V. Smirnova, O. V. Uvarov, P. I. Ivashkin, R. N. Kucherov, V. E. Ivanov, V. I. Bruskov, M. A. Sevostyanov, A. S. Baikin, V. A. Kozlov, M. B. Rebezov, A. A. Semenova, A. B. Lisitsyn, M. V. Vedunova, and S. V. Gudkov, “Bacteriostatic and cytotoxic properties of composite material based on ZnO nanoparticles in PLGA obtained by low temperature method,” Polymers 14 (1), 49 (2022). https://doi.org/10.3390/polym14010049

    Article  Google Scholar 

  8. R. Canaparo, F. Foglietta, T. Limongi, and L. Serpe, “Biomedical applications of reactive oxygen species generation by metal nanoparticles,” Materials 14 (1), 53 (2021). https://doi.org/10.3390/ma14010053

    Article  ADS  Google Scholar 

  9. P. Mu, T. Dong, H. Jiang, M. Jiang, Z. Chen, H. Xu, H. Zhang, and G. Cui, “Crucial challenges and recent optimization progress of metal–sulfur battery electrolytes,” Energy Fuels 35 (3), 1966–1988 (2021). https://doi.org/10.1021/acs.energyfuels.0c04264

    Article  Google Scholar 

  10. A. Kodir, S.-H. Shin, S. Park, M. R. Arbi, T.-H. Yang, H. Lee, D. Shin, and B. Bae, “Macromolecular antioxidants for chemically durable polymer electrolyte fuel cell membranes,” Int. J. Energy Res. 46 (6), 7186–7200 (2022). https://doi.org/10.1002/er.7607

    Article  Google Scholar 

  11. Z.-M. Xiong, M. O’Donovan, L. Sun, J. Y. Choi, M. Ren, and K. Cao, “Anti-aging potentials of methylene blue for human skin longevity,” Sci. Rep. 7, 2475 (2017). https://doi.org/10.1038/s41598-017-02419-3

    Article  ADS  Google Scholar 

  12. A. J. W. te Velthuis, S. H. E. van den Worml, A. C. Sims, R. S. Baric, E. J. Snijder, and M. J. van Hemert, “Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture,” PLoS Pathog. 6 (11), e1001176 (2010). https://doi.org/10.1371/journal.ppat.1001176

    Article  Google Scholar 

  13. D. H. Alamdari, A. B. Moghaddam, S. Amini, A. H. Alamdari, M. Damsaz, and A. Yarahmadi, “The application of a reduced dye used in orthopedics as a novel treatment against coronavirus (COVID-19): A suggested therapeutic protocol,” Arch. Bone Jt. Surg. 8 (1), 291–294 (2020). https://doi.org/10.22038/abjs.2020.47745.2349

    Article  Google Scholar 

  14. N. Dabholkar, S. Gorantla, S. K. Dubey, A. Alexander, R. Taliyan, and G. Singhvi, “Repurposing methylene blue in the management of COVID-19: Mechanistic aspects and clinical investigations,” Biomed. Pharmacother. 142, 112023 (2021). https://doi.org/10.1016/j.biopha.2021.112023

    Article  Google Scholar 

  15. D. Bojadzic, O. Alcazar, and P. Buchwald, “Methylene blue inhibits the SARS-CoV-2 Spike—ACE2 protein–protein interaction—a mechanism that can contribute to its antiviral activity against COVID-19,” Front. Pharmacol. 11, 600372 (2021). https://doi.org/10.3389/fphar.2020.600372

    Article  Google Scholar 

  16. V. Cagno, C. Medaglia, A. Cerny, T. Cerny, A. C.‑A. Zwygart, E. Cerny, and C. Tapparel, “Methylene Blue has a potent antiviral activity against SARS-CoV-2 and H1N1 influenza virus in the absence of UV-activation in vitro,” Sci. Rep. 11, 14295 (2021). https://doi.org/10.1038/s41598-021-92481-9

    Article  ADS  Google Scholar 

  17. A. Alemany, P. Millat-Martinez, M. Corbacho-Monné, P. Malchair, D. Ouchi, A. Ruiz-Comellas, A. Ramírez-Morros, J. R. Codina, R. A. Simon, S. Videla, G. Costes, M. Capdevila-Jáuregui, P. Torrano-Soler, A. S. José, G. B. Papell, J. Puig, A. Otero, J. C. R. Suarez, A. Z. Pellejero, F. L. Roca, O. R. Cortez, V. G. Garcia, J. Vidal-Alaball, A. Millan, E. Contreras, J.-R. Grifols, À. Ancochea, I. Galvan-Femenia, F. P. Ferreira, M. Bonet, J. Cantoni, N. Prat, J. Ara, A. F. Arcarons, M. Farré, E. Pradenas, J. Blanco, M. À. Rodriguez-Arias, G. F. Rivas, M. Marks, Q. Bassat, I. Blanco, B. Baro, B. Clotet, and O. Mitjà for the CONV-ERT Group, “High-titre methylene blue-treated convalescent plasma as an early treatment for outpatients with COVID-19: A randomised, placebo-controlled trial,” Lancet Respir. Med. 10 (3), 278–288 (2022). https://doi.org/10.1016/S2213-2600(21)00545-2

    Article  Google Scholar 

  18. N. F. Bunkin, P. N. Bolotskova, V. A. Kozlov, M. A. Okuneva, and N. V. Penkov, “Dynamics of polymer membrane swelling in an aqueous suspension of amino acids. The role of isotopic composition,” Phys. Wave Phenom. 30 (3) 196–208 (2022). https://doi.org/10.3103/S1541308X22030025

    Article  ADS  Google Scholar 

  19. N. F. Bunkin, P. N. Bolotskova, V. A. Kozlov, and M. A. Okuneva, “Ultra-low-frequency oscillations of luminescence intensity for a polymer-membrane in aqueous salt solutions. Dependence on the isotopic composition,” Phys. Wave Phenom. 30 (4) 242–255. (2022). https://doi.org/10.3103/S1541308X22040021

    Article  ADS  Google Scholar 

  20. B. W. Ninham, P. N. Bolotskova, S. V. Gudkov, E. N. Baranova, V. A. Kozlov, A. V. Shkirin, M. T. Vu, and N. F. Bunkin, “Nafion swelling in salt solutions in a finite sized cell: Curious phenomena dependent on sample preparation protocol,” Polymers 14 (8), 1511 (2022). https://doi.org/10.3390/polym14081511

    Article  Google Scholar 

  21. H. Craig, “Standard for reporting concentrations of deuterium and oxygen-18 in natural waters,” Science 133 (3467), 1833–1834 (1961). https://doi.org/10.1126/science.133.3467.1833

    Article  ADS  Google Scholar 

  22. D. S. Goodsell, The Machinery of Life (Springer-Verlag, New York, 2009). https://doi.org/10.1007/978-0-387-84925-6

  23. I. A. Khawar, J. H. Kim, and H.-J. Kuh, “Improving drug delivery to solid tumors: Priming the tumor microenvironment,” J. Controlled Release 201, 78–89 (2015). https://doi.org/10.1016/j.jconrel.2014.12.018

    Article  Google Scholar 

  24. B. A. Buhren, H. Schrumpf, N.-P. Hoff, E. Bölke, S. Hilton, and P. A. Gerber, “Hyaluronidase: From clinical applications to molecular and cellular mechanisms,” Eur. J. Med. Res. 21, 5 (2016). https://doi.org/10.1186/s40001-016-0201-5

    Article  Google Scholar 

  25. N. Nagy, H. F. Kuipers, A. R. Frymoyer, H. D. Ishak, J. B. Bollyky, T. N. Wight, and P. L. Bollyky, “4-Methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer,” Front. Immunol. 6, 123 (2015). https://doi.org/10.3389/fimmu.2015.00123

    Article  Google Scholar 

  26. H. M. Shepard, “Breaching the castle walls: Hyaluronan depletion as a therapeutic approach to cancer therapy,” Front. Oncol. 5, 192 (2015). https://doi.org/10.3389/fonc.2015.00192

    Article  Google Scholar 

  27. S. Rezaei-Zarchi, A. A. Saboury, and A. Javed, “Characterization study for nanocompositions of methylene blue and riboflavin-nafion on the electrode surface,” Iran. J. Pharm. Sci. 4 (2), 119–126 (2008). http://www.ijps.ir/article_2018_55815214f5875ba0a77d1755d438e11b.pdf

  28. M. A. Al-Ghouti and R. S. Al-Absi, “Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater,” Sci. Rep. 10, 15928 (2020). https://doi.org/10.1038/s41598-020-72996-3

    Article  ADS  Google Scholar 

  29. M. Munir, M. F. Nazar, M. N. Zafar, M. Zubair, M. Ashfaq, A. Hosseini-Bandegharaei, S. U.-D. Khan, and A. Ahmad, “Effective adsorptive removal of methylene blue from water by didodecyldimethylammonium bromide-modified brown clay,” ACS Omega 5 (27), 16711–16721 (2020). https://doi.org/10.1021/acsomega.0c01613

    Article  Google Scholar 

  30. J. Cheng, C. Zhan, J. Wu, Z. Cui, J. Si, Q. Wang, X. Peng, and L.-S. Turng, “Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine,” ACS Omega 5 (10), 5389–5400 (2020). https://doi.org/10.1021/acsomega.9b04425

    Article  Google Scholar 

  31. N. H. Thang, D. S. Khang, T. D. Hai, D. T. Nga, and P. D. Tuan, “Methylene blue adsorption mechanism of activated carbon synthesized from cashew nut shells,” RSC Adv. 11 (43), 26563–26570 (2021). https://doi.org/10.1039/D1RA04672A

    Article  ADS  Google Scholar 

  32. H. M. El-Bery, M. Saleh, R. A. El-Gendy, M. R. Saleh, and S. M. Thabet, “High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes,” Sci. Rep. 12, 5499 (2022). https://doi.org/10.1038/s41598-022-09475-4

    Article  ADS  Google Scholar 

  33. S. H. De Almeida and Y. Kawano, “Ultraviolet-visible spectra of Nafion membrane,” Eur. Polym. J. 33 (8), 1307–1311 (1997). https://doi.org/10.1016/S0014-3057(96)00217-0

    Article  Google Scholar 

  34. J. F. Baret, “Kinetics of adsorption from a solution. Role of the diffusion and of the adsorption-desorption antagonism,” J. Phys. Chem. 72 (8), 2755–2758 (1968). https://doi.org/10.1021/j100854a011

    Article  Google Scholar 

  35. R. Miller and G. Kretzschmar, “Adsorption kinetics of surfactants at fluid interfaces,” Adv. Colloid Interface Sci. 37 (1–2), 97–121 (1991). https://doi.org/10.1016/0001-8686(91)80040-Q

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 22-22-00649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Bunkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunkin, N.F., Bolotskova, P.N., Gladysheva, Y.V. et al. Interaction of Methylene Blue Dye with the Surface of a Polymer Membrane during Soaking in an Aqueous Solution: Dependence on the Isotopic Composition of Water. Phys. Wave Phen. 31, 223–232 (2023). https://doi.org/10.3103/S1541308X23040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23040027

Keywords:

Navigation