Skip to main content
Log in

Swelling of Polymer Membrane in an Aqueous Protein Suspension: Photoluminescence Spectroscopy Experiments

  • METHODS FOR THE STUDY OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Photoluminescence spectroscopy experiments have been performed to study the interaction of Nafion polymer membrane with protein particles upon swelling in a saline solution based on ordinary (natural) water or on deuterium-depleted water (DDW). This study was motivated by the fact that Nafion swelling in natural water is accompanied by efficient “unwinding” of polymer fibers into the liquid bulk, whereas no unwinding was found in DDW. In addition, the set of polymer fibers unwound into the liquid bulk is similar to the extracellular matrix (glycocalix) on the cellular membrane surface. It is of interest to refine the role of unwound fibers in the interaction of protein macromolecules with the polymer membrane surface. The interaction of protein macromolecules with the membrane surface was found to induce luminescence quenching/enhancement effects, specific for different proteins. In other words, different dynamic modes arise in the dependence of luminescence intensity from Nafion surface on the soaking time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface-induced micelle orientation in Nafion films,” Macromolecules. 44 (8), 2893–2899 (2011). https://doi.org/10.1021/ma102361f

    Article  ADS  Google Scholar 

  2. F. H. Garzon, T. Rockward, I. G. Urdampilleta, E. L. Brosha, and F. A. Uribe, “The impact of hydrogen fuel contaminates on long-term PMFC performance,” ECS Trans. 3 (1), 695–703 (2006). https://doi.org/10.1149/1.2356190

    Article  Google Scholar 

  3. G. H. Pollack, The Fourth Phase of Water (Ebner, Seattle, WA, 2013).

    Google Scholar 

  4. N. F. Bunkin, A. V. Shkirin, V. A. Kozlov, B. W. Ninham, E. V. Uspenskaya, and S. V. Gudkov, “Near-surface structure of Nafion in deuterated water,” J. Chem. Phys. 149 (16), 164901 (2018). https://doi.org/10.1063/1.5042065

    Article  ADS  Google Scholar 

  5. B. W. Ninham, P. N. Bolotskova, S. V. Gudkov, Y. Juraev, M. S. Kiryanova, V. A. Kozlov, R. S. Safronenkov, A. V. Shkirin, E. V. Uspenskaya, and N. F. Bunkin, “Formation of water-free cavity in the process of Nafion swelling in a cell of limited volume; effect of polymer fibers unwinding,” Polymers. 12 (12), 2888 (2020). https://doi.org/10.3390/polym12122888

    Article  Google Scholar 

  6. D. S. Goodsell, The Machinery of Life (Springer, Berlin–Heidelberg, 2009).

  7. H. Craig, “Standard reporting concentrations of deuterium and oxygen-18 in natural water,” Science. 133 (3467), 1833–1834 (1961). https://doi.org/10.1126/science.133.3467.1833

    Article  ADS  Google Scholar 

  8. D. R. Baker, R. F. Simmerman, J. J. Sumner, B. D. Bruce, and C. A. Lundgren, “Photoelectrochemistry of photosystem I bound in Nafion,” Langmuir. 30 (45), 13650–13655 (2014). https://doi.org/10.1021/la503132h

    Article  Google Scholar 

  9. P. Fromme, P. Jordan, and N. Krauß, “Structure of photosystem I,” Biochim. Biophys. Acta, Bioenerg. 1507 (1–3), 5–31 (2001). https://doi.org/10.1016/S0005-2728(01)00195-5

    Article  Google Scholar 

  10. G. Fortier, M. Vaillancourt, and D. Bélanger, “Evaluation of nafion as media for glucose oxidase immobilization for the development of an amperometric glucose biosensor,” Electroanalysis. 4 (3), 275–283 (1992). https://doi.org/10.1002/elan.1140040304

    Article  Google Scholar 

  11. C. Fu, W. Yang, X. Chen, and D. G. Evans, “Direct electrochemistry of glucose oxidase on a graphite nanosheet–Nafion composite film modified electrode,” Electrochem. Commun. 11 (5), 997–1000 (2009). https://doi.org/10.1016/j.elecom.2009.02.042

    Article  Google Scholar 

  12. P. Bianco and J. Haladjian, “Electrochemical behavior of redox proteins entrapped in Nafion films,” Electroanalysis. 6 (5-6), 415–422 (1994). https://doi.org/10.1002/elan.1140060510

    Article  Google Scholar 

  13. C. E. Hahn, H. A. O. Hill, M. D. Ritchie, and J. W. Sear, “The electrochemistry of proteins entrapped in Nafion,” J. Chem. Soc., Chem. Commun. No. 2, 125–126 (1990). https://doi.org/10.1039/C39900000125

    Article  Google Scholar 

  14. E. Sedlák, M. Antalık, J. Bágel’ová, and M. Fedurco, “Interaction of ferricytochrome c with polyanion Nafion,” Biochim. Biophys. Acta. 1319 (2-3), 258–266 (1997). https://doi.org/10.1016/s0005-2728(96)00170-3

    Article  Google Scholar 

  15. T. I. Valdes, W. Ciridon, B. D. Ratner, and J. D. Bryers, “Surface modification of a perfluorinated ionomer using a glow discharge deposition method to control protein adsorption,” Biomaterials. 29 (10), 1356–1366 (2008). https://doi.org/10.1016/j.biomaterials.2007.11.035

    Article  Google Scholar 

  16. T. I. Valdes, W. Ciridon, B. D. Ratner, and J. D. Bryers, “Modulation of fibroblast inflammatory response by surface modification of a perfluorinated ionomer,” Biointerphases. 6 (2), 43–53 (2011). https://doi.org/10.1116/1.3583535

    Article  Google Scholar 

  17. Ch. K. Chui, An Introduction to Wavelets (Academic, San Diego, 1992).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Center for Collective Use of the Prokhorov General Physics Institute of the Russian Academy of Sciences for supplying unique equipment.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-02-00061-a, and a grant of the President of the Russian Federation (MD-2128.2020.11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Bunkin.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astashev, M.E., Bolotskova, P.N., Bunkin, N.F. et al. Swelling of Polymer Membrane in an Aqueous Protein Suspension: Photoluminescence Spectroscopy Experiments. Phys. Wave Phen. 29, 123–130 (2021). https://doi.org/10.3103/S1541308X21020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21020035

Keywords:

Navigation