Skip to main content
Log in

Mechanochemical Instability of Water and Its Applications

  • BIOCHEMICAL ACTIVATION OF WATER AND AQUEOUS SOLUTIONS BY EXTERNAL IMPACTS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A hypothesis of mechanochemical instability of water (MCIW) is considered. It assumes that under ordinary conditions weak hydrogen bonds in water form Н2О clusters so strong that the flows with a velocity gradient can break covalent Н—ОН bonds in these clusters, which results in occurrence of Н and ОН radicals and formation of Н2О2 and Н2 molecules. This is a pure structural effect; therefore, the substances that strengthen the water structure (MgSO4 salt, inert gases) considerably contribute to its enhancement. An increase in temperature and/or pressure diminishes the effect, weakening the water structure and determining limits of MCIW applicability. It is assumed that the MCIW mechanism can be an important element of the global hydrogen peroxide flow on the Earth. Applications of MCIW to sonolysis, mechanical activation, and formation of active water microdroplets are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. A. Margulis, “Sonoluminescence,” Phys.-Usp. 43 (3), 259–282 (2000). https://doi.org/10.1070/PU2000v043n03ABEH000455

    Article  ADS  Google Scholar 

  2. V. I. Bruskov, Z. K. Masalimov, and A. V. Chernikov, “Heat-induced generation of reactive oxygen species in water,” Dokl. Biochem. Biophys.384 (6), 181–184 (2002). https://doi.org/10.1023/A:1016036617585

    Article  Google Scholar 

  3. S. V. Gudkov, G. A. Lyakhov, V. I. Pustovoy, and I. A. Shcherbakov, “Influence of mechanical effects on the hydrogen peroxide concentration in aqueous solutions,” Phys. Wave Phenom. 27 (2), 141–143 (2019). https://doi.org/10.3103/S1541308X19020092

    Article  ADS  Google Scholar 

  4. Jae Kyoo Lee, K. L. Walker, Hyun Soo Han, Jooyoun Kang, F. B. Prinz, R. M. Waymouth, Hong Gil Nam, and R. N. Zare, “Spontaneous generation of hydrogen peroxide from aqueous microdroplets,” Proc. Natl. Acad. Sci. U.S.A.116 (39), 19294–19298 (2019). https://doi.org/10.1073/pnas.1911883116

    Article  Google Scholar 

  5. G. A. Lyakhov and I. A. Shcherbakov, “Approaches to the physical mechanisms and theories of low-concentration effects in aqueous solutions,” Phys. Wave Phenom. 27 (2), 79–86 (2019). https://doi.org/10.3103/S1541308X19020018

    Article  ADS  Google Scholar 

  6. G. A. Domrachev, Yu. L. Rodygin, and D. A. Selivanovskii, “The role of sound and of liquid water as a dynamically unstable polymeric system in mechanochemically activated oxygen-generating processes under terrestrial conditions,” Russ. J. Phys. Chem. 66 (3), 457–460 (1992).

    Google Scholar 

  7. G. A. Domrachev, Yu. L. Rodygin, and D. A. Selivanovskii, “Mechanochemically activated decomposition of water in the liquid phase,” Dokl. Akad. Nauk SSSR. 329 (2), 186–188 (1993) [in Russian].

    Google Scholar 

  8. G. A. Domrachev, A. V. Mayorova, Yu. L. Rodygin, and D. A. Selivanovskii, “Sound attenuation during water sonolysis,” Acoust. Phys. 39 (2), 136–140 (1993).

    ADS  Google Scholar 

  9. G. A. Domrachev, D. A. Selivanovskii, Yu. L. Rodygin, and I. N. Didenkulov, “Sound energy losses during water sonolysis,” Russ. J. Phys. Chem. A.72 (2), 282–287 (1998).

    Google Scholar 

  10. Yu. S. Veselov, “Effect of hydrogen peroxide accumulation during reverse-osmotic desalination of sea water,” J. Water Chem. Technol. 13 (8), 741–745 (1991) [in Russian].

    Google Scholar 

  11. G. A. Domrachev, D. A. Selivanovskii, I. N. Didenkulov, Yu. L. Rodygin, and P. A. Stunzhas, “Thermal characteristics of the sonolysis efficiency and the sonoluminescence intensity in water,” Russ. J. Phys. Chem. A.75 (2), 315–320 (2001).

    Google Scholar 

  12. G. A. Domrachev, Yu. L. Rodygin, and D. A. Selivanovskii, “Improved technique for chemiluminescent determination of small concentrations of H2O2 in water,” High-Purity Subst. No. 5, 187–189 (1991) [in Russian].

  13. G. A. Domrachev, I. N. Didenkulov, Yu. L. Rodygin, D. A. Selivanovskii, and P. A. Stunzhas, “The dissociation of water in streams near solid walls,” Chem. Phys. Rep. 20 (4), 82–89 (2001) [in Russian].

    Google Scholar 

  14. D. A. Selivanovskii, “On the effect of inert gases and air on water dissociation,” Dyn. Contin. Media. No.126, 105–106 (2010) [in Russian].

    Google Scholar 

  15. D. A. Selivanovskii, I. N. Didenkulov, G. A. Domrachev, and P. A. Stunzhas, “Mechanochemical decomposition of water as a source of oxygen in the atmosphere,” in Proceedings of the 3rd All-Russian Conference “Physical Problems of Ecology (Ecological Physics)” (May 22–24,2001, Moscow, Russia), Ed. by V. I. Trukhin, Yu. A. Pirogov, and K. V. Pokazeev (Moscow Gos. Univ., Moscow, 2001). No. 8, pp. 54–59 [in Russian]. http://ocean.phys.msu.ru/ecophys/ecophys-8.pdf

  16. A. I. Kloss, “Electron-radical dissociation and water activation mechanism,” Dokl. Akad. Nauk SSSR. 303 (6), 1403–1407 (1988) [in Russian].

    Google Scholar 

  17. S. M. Kathmann, I.-F. W. Kuo, and C. J. Mundy, “Electronic effects on the surface potential at the vapor–liquid interface of water,” J. Am. Chem. Soc. 130 (49), 16556–16561 (2008). https://doi.org/10.1021/ja802851w

    Article  Google Scholar 

  18. S. M. Kathmann, I.-F. W. Kuo, and C. J. Mundy, “Erratum to: “Electronic effects on the surface potential at the vapor–liquid interface of water,” J. Am. Chem. Soc. 131 (47), 17522 (2009). https://doi.org/10.1021/ja908142d

    Article  Google Scholar 

Download references

Funding

The work was performed at the Institute of Oceanology, Russian Academy of Sciences, within State Assignment no. 0149-2019-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Stunzhas.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stunzhas, P.A. Mechanochemical Instability of Water and Its Applications. Phys. Wave Phen. 28, 111–115 (2020). https://doi.org/10.3103/S1541308X20020168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20020168

Navigation