Skip to main content
Log in

General Features of Size Distributions and Internal Structure of Particles in Aqueous Nanosuspensions

  • METHODS OF OPTICAL DIAGNOSTICS OF DROPLET PHASE OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Size distributions of nanoparticle aggregates in water suspensions and emulsions are measured for a number of metal oxides, silicon carbide, nanodiamonds, and lubricating cutting fluid. It is found that all these distributions have a similar bimodal form. Estimations of the average distance between the nanoparticles in the aggregates based on various experimental results and theoretical models agree with one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering (Krieger, Malabar, 1990).

    Google Scholar 

  2. J. K. G. Dhont, An Introduction to the Dynamics of Colloids (Elsevier, Amsterdam, 1996).

    Google Scholar 

  3. L. L. Chaikov, K. V. Kovalenko, S. V. Krivokhizha, A. D. Kudryavtseva, M. V. Tareeva, N. V. Tcherniega, and M. A. Shevchenko, “Structure of water microemulsion particles: study by optical methods,” Phys. Wave Phenom. 27 (2), 87–90 (2019). https://doi.org/10.3103/S1541308X1902002X

    Article  ADS  Google Scholar 

  4. I. S. Burkhanov, L. L. Chaikov, D. Yu. Korobov, S. V. Krivokhizha, A. D. Kudryavtseva, V. V. Savranskiy, A. S. Shevchuk, and N. V. Tcherniega, “Effective acousto-optical interactions in suspensions of nanodiamond particles,” J. Russ. Laser Res. 33 (5), 496–502 (2012).

    Article  Google Scholar 

  5. I. S. Burkhanov, L. L. Chaikov, N. A. Bulychev, M. A. Kazaryan, and V. I. Krasovskii, “Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study,” Bull. Lebedev Phys. Inst. 41 (10), 297–304 (2014). https://doi.org/10.3103/S1068335614100054

    Article  ADS  Google Scholar 

  6. S. N. Chirikov and A. V. Shkirin, “Determination of the disperse composition of a PbO suspension containing aggregates of particles of lamellar shape by the laser-polarimetry method,” Opt. Spectrosc. 124 (4), 575–584 (2018).

    Article  ADS  Google Scholar 

  7. N. A. Bulychev, M. A. Kazaryan, L. L. Chaikov, I. S. Burkhanov, and V. I. Krasovskii, “Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles,” Bull. Lebedev Phys. Inst. 41 (9), 264–268 (2014). https://doi.org/10.3103/S106833561409005X

    Article  ADS  Google Scholar 

  8. K. V. Kovalenko, S. V. Krivokhizha, A. V. Masalov, and L. L. Chaikov, “Correlation spectroscopy measurements of particle size using an optical fiber probe,” Bull. Lebedev Phys. Inst. 36 (4), 95–103 (2009). https://doi.org/10.3103/S1068335609040010

    Article  ADS  Google Scholar 

  9. M. N. Kirichenko, A. T. Sanoeva, and L. L. Chaikov, “The appearance of artifact peak in particle size distribution, measured by DLS at low concentrations,” Bull. Lebedev Phys. Inst. 43 (8), 256–260 (2016). https://doi.org/10.3103/S1068335616080066

    Article  ADS  Google Scholar 

  10. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, L. L. Chaikov, S. N. Chirikov, M. N. Kirichenko, S. D. Nikiforov, and S. I. Tymper, “Influence of low concentrations of scatterers and signal detection time on the results of their measurements using dynamic light scattering,” Quantum Electron. 47 (10), 949–955 (2017). https://doi.org/10.1070/QEL16408

    Article  ADS  Google Scholar 

  11. S. O. Yurchenko, A. V. Shkirin, B. W. Ninham, A. A. Sychev, V. A. Babenko, N. V. Penkov, N. P. Kryuchkov, and N. F. Bunkin, “Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions,” Langmuir. 32, 11245–11255 (2016). https://doi.org/10.1021/acs.langmuir.6b01644

    Article  Google Scholar 

  12. K. Larson-Smith, A. Jackson, and D. C. Pozzo, “Small angle scattering model for Pickering emulsions and raspberry particles,” J. Colloid Interface Sci. 343 (1), 36–41 (2010). https://doi.org/10.1016/j.jcis.2009.11.033

    Article  ADS  Google Scholar 

  13. N. F. Bunkin, A. V. Shkirin, N. V. Penkov, S. N. Chirikov, P. S. Ignatiev, and V. A. Kozlov, “The physical nature of mesoscopic inhomogeneities in highly diluted aqueous suspensions of protein particles,” Phys. Wave Phenom. 27 (2), 102–112 (2019). https://doi.org/10.3103/S1541308X19020043

    Article  ADS  Google Scholar 

  14. B. A. Legg, M. Zhu, L. R. Comolli, B. Gilbert, and J. F. Banfield, “Impacts of ionic strength on three-dimensional nanoparticle aggregate structure and consequences for environmental transport and deposition,” Environ. Sci. Technol. 48 (23), 13703 (2014). https://doi.org/10.1021/es502654q

    Article  ADS  Google Scholar 

  15. V. I. Lesin, Yu. A. Koksharov, and G. B. Khomutov, “Viscosity of liquid suspensions with fractal aggregates: Magnetic nanoparticles in petroleum colloidal structures,” Colloids Surf., A.392, 88–94 (2011). https://doi.org/10.1016/j.colsurfa.2011.09.038

    Article  Google Scholar 

Download references

Funding

The work was supported in part by the program of the Presidium of the Russian Academy of Sciences I.7R, the Russian Foundation for Basic Research, project nos. 18-02-00786 and 18-32-00639, and the MEPhI Academic Excellence Project, contract no. 02.a03.21.0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Chaikov.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirichenko, M.N., Chaikov, L.L., Shkirin, A.V. et al. General Features of Size Distributions and Internal Structure of Particles in Aqueous Nanosuspensions. Phys. Wave Phen. 28, 140–144 (2020). https://doi.org/10.3103/S1541308X20020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20020077

Navigation