Skip to main content
Log in

High-Precision Diode Laser Spectroscopy. Study of a Mixture of Real Gases

  • High-Precision Laser Spectroscopy
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The aim of this work is to analyze the high-precision measurements of the profile of spectral lines using near-IR diode lasers (DLs). To this end, a multichannel DL spectrometer of high spectral resolution has been developed, calibrated, and put into operation. Special attention is paid to the deviation of the gases studied from ideal behavior. Real CO2 gas and a mixture of real CO2:SF6 gases are used as models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Hinkley, “High Resolution IR Spectroscopy with a Tunable Diode Laser,” Appl. Phys. Lett. 16, 351 (1970).

    Article  ADS  Google Scholar 

  2. E. Hinkley, R. Ku, and P. Kelley, “Techniques for Detection of Molecular Pollutants by Absorption of Laser Radiation,” in Laser Monitoring of Atmosphere, Ed. by E. Hinkley (Springer Verlag, Berlin, 1976), pp. 237–295.

    Chapter  Google Scholar 

  3. E.D. Hinkley, K.W. Nill, and F.A. Blum, Laser Spectroscopy of Atoms and Molecules, Ed. by H. Walther (Springer Verlag, Heidelberg, 1976).

  4. K. Niemax, “Diode Laser Spectroscopy,” Spectrochim. Acta Rev. 15, 289 (1993).

    Google Scholar 

  5. Proc. SPIE “Tunable Diode Laser Application”, Ed. by A. Nadezhdinskii and A. Prokhorov, Vol. 1724 (1992).

  6. A.I. Nadezhdinskii and Ya.Ya. Ponurovskii, “High-Precision Spectroscopy with Diode Lasers. Deviation of Gas from Ideal Behavior,” Phys. Wave Phenom. 26(3), 169 (2018) [DOI: https://doi.org/10.3103/S1541308X18030019].

    Article  ADS  Google Scholar 

  7. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Csaszar, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Muller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E.J. Zak, “The HITRAN 2016 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer. 203, 3 (2017).

    Article  ADS  Google Scholar 

  8. S.G. Rautian and I.I. Sobel’man, “The Effect of Collisions on the Doppler Broadening of Spectral Lines,” Sov. Phys.-Usp. 9(5), 701 (1967).

    Article  ADS  Google Scholar 

  9. J.M. Flaud and C. Camy-Peyret, “Vibration-Rotation Intensities in H2O-Type Molecules,” J. Mol. Spectrosc. 55, 278 (1975).

    Article  ADS  Google Scholar 

  10. J. Meija, T. Coplen, M. Berglund, W. Brand, P. De Biévre, M. Gröning, N. Holden, J. Irrgeher, R. Loss, T. Walczyk, and T. Prohaska, “Atomic Weights of the Elements,” Pure Appl. Chem. 88(3), 265 (2016).

    Google Scholar 

  11. D.S. Tsiklis, L.R. Linshits, and I.B. Rodkina, “Untersuchung der Volumeigenschaften von Gas-Mischungen. I. Molvolumina und zweite Virialkoeffiziente der CO2-He-Mischungen bei 150°C,” Zh. Fiz. Khim. 48, 1544 (1974) [in Russian].

    Google Scholar 

  12. N.E. Khazanova, E.E. Sominskaya, A.V. Zakharova, and M.B. Rozovski, “Thermodynamic Properties of the Ethane-Carbon Dioxide System. p, V, T, N Data,” Teplofiz. Svoistva Veshchestv Mater. 10, 213 (1976) [in Russian].

    Google Scholar 

  13. B. Schramm, E. Elias, L. Kern, G. Natour, A. Schmitt, and Ch. Weber, “Precise Measurements of Second Virial Coefficients of Simple Gases and Gas Mixtures in the Temperature Range Below 300 K,” Ber. Bunsenges. Phys. Chem. 95(5), 615 (1991) [DOI: https://doi.org/10.1002/bbpc.19910950513].

    Article  Google Scholar 

  14. P.J. McElroy, Lim Leong Kee, and C.A. Renner, “Excess Second Virial Coefficients for Binary Mixtures of Carbon Dioxide with Methane, Ethane, and Propane,” J. Chem. Eng. Data. 35(3), 314 (1990) [DOI: https://doi.org/10.1021/je00061a024].

    Article  Google Scholar 

  15. B.V. Mallu, G. Natarajan, and D.S. Viswanath, “(p, V m, T, x) and Virial Coefficients of {xCO2 + (1−x)CO},” J. Chem. Thermodyn. 21(9), 989 (1989) [DOI: https://doi.org/10.1016/0021-9614(89)90159-6].

    Article  Google Scholar 

  16. Tables of the Second and Third Virial Coefficients. Physical Values: A Handbook, Ed. by I.S. Grigoriev and E.Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  17. J. Mollerup, “Measurement of the Volumetric Properties of Sulfur Hexafluoride from 260 to 340 K at Pressures to 2.5 MPa,” J. Chem. Eng. Data. 30(1), 21 (1985) [DOI: https://doi.org/10.1021/je00039a007].

    Article  MathSciNet  Google Scholar 

  18. J.H. Dymond and E.B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford, 1980).

    Google Scholar 

  19. J.J. Hurly, D.R. Defibaugh, and M.R. Moldover, “Thermodynamic Properties of Sulfur Hexafluoride,” Int. J. Thermophys. 21(3), 793 (2000).

    Article  Google Scholar 

  20. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol. 5: Statistical Physics (Pergamon, Oxford, 1980). Pt. 1.

    Google Scholar 

  21. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, N.Y., 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Nadezhdinskii or Ya. Ya. Ponurovskii.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadezhdinskii, A.I., Ponurovskii, Y.Y. High-Precision Diode Laser Spectroscopy. Study of a Mixture of Real Gases. Phys. Wave Phen. 27, 1–8 (2019). https://doi.org/10.3103/S1541308X19010011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X19010011

Navigation