Skip to main content
Log in

Estimation of the Maximum Thermionic Emission Cooling of High-Speed Aircraft

  • AIRCRAFT EQUIPMENT
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The paper analyzes the possibilities of using the thermionic cooling methods that significantly reduce the temperature and temperature stresses in the elements and structures of aircraft, increasing the life of thermally loaded elements and flight safety. We estimate the range of altitudes and flight speeds of aircraft at which the practical implementation of thermionic cooling is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Afanas’ev, V.A., Degtyarev, G.L., and Meshchanov, A.S., Reusable Space Transportation System, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 3, pp. 9–13 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 3, pp. 325–330].

    Google Scholar 

  2. Afanas’ev, V.A., Degtyarev, G.L., and Meshchanov, A.S., Controlling of a Return Space Vehicle along Transition Trajectories in Atmosphere, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 16–22 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 2, pp. 152–159].

    Google Scholar 

  3. Kernozhitskii, V.A., Kolychev, A.V., and Okhochinskii, D.M., RU Patent 2430857, Byul. Izobr., 2011, no. 28.

  4. Colorado State University, URL: http://www.engr.colostate.edu/~kkma/Personnel.html.

  5. Kernozhitskii, V.A., Kolychev, A.V.,and Okhochinskii, D.M., RU Patent 2404087, Byul. Izobr., 2010, no. 32.

  6. Ushakov, B.A., Nikitin, V.D., and Emel’yanov, I.Ya., Osnovy termoemissionnogo preobrazovaniya energii (Basics of Thermionic Transformation of Energy), Moscow: Atomizdat, 1974.

    Google Scholar 

  7. Kolychev, A.V., Active Thermal Protection of Configuration Items of a Hypersonic Flight Vehicle on New Physical Principles at Aerodynamic Heating, Trudy MAI, 2012, no. 51, URL: http://trudymai.ru/eng/published.php?ID=29053.

    Google Scholar 

  8. Bezverkhnii, N.O., Bobashev, S.V., Kolychev, A.V., Monakhov, N.A., Ponyaev, S.A., and Sakharov, V.A., Study of the Effect of Electron Cooling: Overview of the Current State, Zhurnal Tekhnicheskoi Fiziki, 2019, vol. 89, no. 3, pp. 323–328 [Technical Physics (Engl. Transl.), vol. 64, no 3, pp. 287–292].

    Google Scholar 

  9. Folkersma, M., Schmehl, R., and Viré, A., Boundary Layer Transition Modeling on Leading Edge Inflatable Kite Airfoils, Wind Energy, 2019, vol. 22, issue 7, pp. 908–921.

    Google Scholar 

  10. Kolychev, A.V., Kernozhitskii, V.A., and Chernyshov, M.V., Thermionic Methods of Cooling for Thermostressed Elements of Advanced Reusable Launch Vehicles, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 4, pp. 132–137 [Russian Aeronautics (Engl. Transl.), vol. 62, no. 4, pp. 669–674].

    Google Scholar 

  11. CM01.09.20: Synthesis and Characterization of Mayenite Electride – Ti Composites for Thermionic Electron Emission Applications, URL: https://mrsfall2018.zerista.com/event/member/529757.

  12. Yoshizumi, T. and Hayashi, K., Thermionic Electron Emission from a Mayenite Electride-Metallic Titanium Composite Cathode, Applied Physics Express, 2013, vol. 6, no. 1, paper no. 015802.

    Article  Google Scholar 

  13. Garshin, A.P., Kulik, V.I., Matveev, S.A., and Nilov, A.S., The State-of-Art Technologies for the Fiber-Reinforced Composition Materials with the Ceramic Refractory Matrix, Novye Ogneupory, 2017, no. 4, pp. 20–35.

    Article  Google Scholar 

  14. Zimin, V.P., Efimov, K.N., Kolychev, A.V., Kernozhitskii, V.A., Ovchinnikov, V.A., and Yakimov, A.S., Simulation of Thermionic Thermal Shielding during Convective Heating of a Composite Shell, Kosmicheskaya Tekhnika i Tekhnologii, 2019, vol. 24, no. 1, pp. 23–34.

    Google Scholar 

  15. Hanquist, K.M. and Boyd, I.D., Plasma Assisted Cooling of Hot Surfaces on Hypersonic Vehicles, Frontiers in Physics, 2019, vol. 7, URL: https://www.frontiersin.org/articles/10.3389/fphy.2019.00009/full.

    Article  Google Scholar 

  16. Kolychev, A.V., Active Thermionic Thermal Protection of Design Elements of the Hypersonic Flying Machine at Their Aerodynamic Heating and Borders of Its Applicability, Trudy MAI, 2013, no. 68, URL: http://trudymai.ru/eng/published.php?ID=41732.

    Google Scholar 

  17. Kolychev, A.V., Estimation of Operational Parameters of Thermionic Thermal Protection of Hypersonic Flying Vehicles, Trudy MAI, 2014, no. 74, URL: http://trudymai.ru/eng/published.php?ID=49133.

    Google Scholar 

  18. Hanquist, K.M. and Boyd, I.D., Limits for Thermionic Emission from Leading Edges of Hypersonic Vehicles, URL: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/140556/6.2016-0507.pdf?sequence=1.

  19. Bezverkhnii, N.O., Bobashev, S.V., Monakhov, N., and Sakharov, V.A., Proposals of Experimental Methods for Electron Transpiration Cooling Effect, Journal of Physics: Conference Series, URL: https://iopscience.iop.org/article/10.1088/1742-6596/1135/1/012085, 2018, vol. 1135, Paper No. 012085.

    Google Scholar 

  20. Fomenko, V.S., Emissionnye svoistva materialov (Emission Properties of Materials), Kiev: Naukova Dumka, 1981.

    Google Scholar 

  21. Babichev, A.P., Babushkin, N.A., Bratkovskii, A.M., et al., Fizicheskie velichiny: Spravochnik (Physical Values: Handbook), Grigor’ev, I.S., Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

    Google Scholar 

  22. Bortnik, I.M., Vereshchagin, I.P., and Vershinin, Yu.N., Elektrofizicheskie osnovy tekhniki vysokikh napryazhenii (Electro-Physical Basics of the High-Voltage Equipment), Moscow: Energoatomizdat, 1993.

    Google Scholar 

  23. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Dolgoprudnyi: Intellekt, 2009.

    Google Scholar 

  24. Lunev, V.V., Techenie real’nykh gazov s bol’shimi skorostyami (High-Velocity Flow of Real Gases), Moscow: Fizmatlit, 2007.

    Google Scholar 

  25. Fedorov, V.A., Estimation of Electron Concentration in Plasma and Plasma Frequency in the Vicinity of a Hypersonic Aircraft that Moves in Atmosphere and Analysis of Propagation Frequencies of Electromagnetic Waves in Such Plasma, Zhurnal Tekhnicheskoi Fiziki, 2016, vol. 86, no. 5, pp. 148–150 [Technical Physics (Engl. Transl.), vol. 61, no 5, pp. 786–788].

    Google Scholar 

  26. Kuchurkin, A.A., Tambovtsev, V.I., and Teplyakov, A.V., Microwave Diagnostics of Gas Discharge Plasma, Trudy MFTI, 2010, no. 3, pp. 122–125.

    Google Scholar 

  27. Zheleznyakova, A.L., A Unified Approach to Building Complex Virtual Surfaces and Computational Grids for the Comprehensive 3D Simulation of Aerospace Industry Products, Fiziko-Khimicheskaya Kinetika v Gazovoi Dinamike, 2016, no. 2, URL: http://chemphys.edu.ru/media/published/Zhelez_ART_corr.pdf.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project “Creating a leading scientific and technical reserve in the development of advanced technologies for small gas turbine, rocket and combined engines of ultra-light launch vehicles, small spacecraft and unmanned aerial vehicles that provide priority positions for Russian companies in emerging global markets of the future”, no. FZWF-2020-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kernozhitskii.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolychev, A.V., Kernozhitskii, V.A. & Chernyshov, M.V. Estimation of the Maximum Thermionic Emission Cooling of High-Speed Aircraft. Russ. Aeronaut. 63, 371–376 (2020). https://doi.org/10.3103/S1068799820030010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820030010

Keywords

Navigation