Skip to main content
Log in

Analytical Synthesis of Stabilization Laws for Spacecraft Orbit Attitude Using Information on an Angle and the Full Vector of Angular Velocity

  • Flight Dynamics and Control of Flight Vehicles
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The problem of stabilizing the spacecraft orbit attitude was solved analytically for the sixth order model of its rotary motion with the use of the output feedback control synthesis that is based on decomposition of a control object. Numerical simulation data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Branets, V.N., Platonov, V.N., Sumarokov, A.V., and Timakov, S.N., Stabilization of a Wheels Carrying Communication Satellite without Angle and Angular Velocity Sensors, Izv. RAN. Teoriya i Sistemy Upravleniya, 2008, vol. 47, no.1, pp. 127–137 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 47, no.1, pp. 118–128].

    MATH  Google Scholar 

  2. Platonov, V.N., On the Possibility of Long-Term Maintenance of Geostationary Satellite Attitude without Using the External Information Sensors and Inertial Sensors, Kosmicheskie Issledovaniya, 2009, vol. 47, no. 3, pp. 263–270 [Cosmic Research (Engl. Transl.), vol. 47, no. 3, pp. 235–242].

    Google Scholar 

  3. Efimov, D.A., Sumarokov, A.V., and Timakov, S.N., On the Stabilization of a Communication Satellite without Measuring its Angular Velocity, Izv. RAN. Teoriya i Sistemy Upravleniya, 2012, vol. 51, no. 5, pp. 119–128 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 51, no. 5, pp. 732–741].

    MathSciNet  MATH  Google Scholar 

  4. Zubov, N.E., Zybin, E.Yu., Mikrin, E.A., Misrikhanov, M.Sh., Proletarkii, A.V., and Ryabchenko, V.N., Output Control of a Spacecraft Motion Spectrum, Izv. RAN. Teoriya i Sistemy Upravleniya, 2014, vol. 53, no. 4, pp. 111–122 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 53, no. 4, pp. 576–586].

    MATH  Google Scholar 

  5. Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N., Oleinik, A.S., and Efanov, D.E., The Spacecraft Angular Velocity Estimation in the Orbital Stabilization Mode by the Results of the Local Vertical Sensor Measurements, Vestnik MGTU im. Baumana. Seriya Priborostroenie, 2014, vol. 98, no. 5, pp. 3–17.

    Google Scholar 

  6. Romanenko, L.G., Romanenko, A.G., and Samarova, G.G., Aircraft Longitudinal Control without a Pitch Command in the Autopilot, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 25–29 [Russian Aeronautics (Engl. Transl.), vol. 47, no. 4, pp. 361–367].

    Google Scholar 

  7. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.Sh., and Ryabchenko, V.N., Stabilization of Coupled Motions of an Aircraft in the Pitch-Yaw Channels in the Absence of Information About the Sliding Angle: Analytical Synthesis, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, vol. 54, no.1, pp. 95–105 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 54, no.1, pp. 93–103].

    MathSciNet  MATH  Google Scholar 

  8. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.Sh., and Ryabchenko, V.N., Output Control of the Longitudinal Motion of a Flying Vehicle, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, vol. 54, no. 5, pp. 164–176 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 54, no. 5, pp. 825–837.

    MathSciNet  MATH  Google Scholar 

  9. Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N., and Fomichev, A.V., Synthesis of Control Laws for Aircraft Lateral Motion at the Lack of Data on the Slip Angle: Analytical Solution, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 1, pp. 61–70 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 1, pp. 64–73].

    Google Scholar 

  10. Zubov, N.E., Lapin, A.V., and Mikrin, E.A., Stabilization of Spacecraft Orbital Attitude, Kosmicheskaya Tekhnika i Tekhnologii, 2013, no. 3, pp. 74–81.

    Google Scholar 

  11. Saleh, J., Castet, J.-F., Spacecraft Reliability and Multi-State Failures: A Statistical Approach, New York: John Wiley & Sons, 2011.

    Book  Google Scholar 

  12. Lv, Y., Hu, Q., Ma, G., Zhang, J., Attitude Cooperative Control of Spacecraft Formation via Output Feedback, Aircraft Engineering and Aerospace Technology, 2012, vol. 84, no. 5, pp. 321–329.

    Article  Google Scholar 

  13. Nelson, R., Flight Stability and Automatic Control, New York: McGraw-Hill, 1998.

    Google Scholar 

  14. Liu, Z., Zhou, F., Zhou, J., Flight Control of Unpowered Flying Vehicle Based on Robust Dynamic Inversion, Proc. of the 25th Chinese Control Conf., Heilongjiang, China, 2006, pp. 693–698.

    Google Scholar 

  15. Hovakimyan, N., Lavretsky, E., Calise, A.J., Sattigeri, R., Decentralized Adaptive Output Feedback Control via Input/Output Inversion, Proc. IEEE Conf. Dec. Control, Maui, HI, 2003, pp. 1699–1704.

    Google Scholar 

  16. Zubov, N.E., Mikrin, E.A., and Ryabchenko, V.N., Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya letatel’nykh apparatov (Matrix Methods in Theory and Practice of Aircrafts’ Automatic Control Systems), Moscow: Izd. MGTU im. N.E. Baumana, 2016.

    Google Scholar 

  17. Leonov, G.A. and Shumafov, M.M., Metody stabilizatsii lineinykh upravlyaemykh sistem (Methods of Linear Controllable Systems Stabilization), St. Petersburg: Izd. SPbGU, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Zubov.

Additional information

Original Russian Text © N.E. Zubov, E.A. Mikrin, V.N. Ryabchenko, I.V. Sorokin, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2018, No. 2, pp. 53–63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N. et al. Analytical Synthesis of Stabilization Laws for Spacecraft Orbit Attitude Using Information on an Angle and the Full Vector of Angular Velocity. Russ. Aeronaut. 61, 201–211 (2018). https://doi.org/10.3103/S1068799818020083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799818020083

Keywords

Navigation