Skip to main content
Log in

A high-temperature frameless starter-generator integrated into an aircraft engine

  • Aircraft Instruments and Instrumentation Computer Complexes
  • Published:
Russian Aeronautics (Iz VUZ) Aims and scope Submit manuscript

Abstract

In this paper, a starter-generator (SG) integrated into an aircraft gas turbine engine (GTE) is presented. Operating modes of the SG under different temperature conditions are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavagnino, A., Li, Z., Tenconi, A., and Vaschetto, S., Integrated Generator for More Electric Engine: Design and Testing of a Scaled-Size Prototype, IEEE Trans. on Industry Applications, 2013, vol. 49, no. 5, pp. 2034–2043.

    Article  Google Scholar 

  2. Maggiore, P., Dalla Vedova, M.D.L., Pace, L., and Piovano, A., Development of an Environmental Control System Pack Simulation Model for a More Electric Aircraft, Int. Journal of Mechanics, and Control, 2014, vol. 15, no. 2, pp. 31–35.

    Google Scholar 

  3. Gureev, V.M., Mats, E.B., Ivanova, V.N., Gureev, M.V., Malyshkin, D.A., and Agalakov, Yu.R., Processing Feasibilities of Enhancing the GTE-Based Electric Power Plant Efficiency, Izv.Vuz. Av. Tekhnika, 2013, vol. 56, no. 2, pp. 57–60 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 2, pp. 179–184].

    Google Scholar 

  4. Van Der Geest, M., Polinder, H, Ferreita, J.A., and Zeilstra, D., Machine Selection and Initial Design of an Aerospace Starter/Generator, Proc. of the IEEE International Electric Machines and Drives Conference, 2013, Chicago, pp. 196–203.

    Google Scholar 

  5. Tosetti, M., Maggiore, P., Cavagnino, A., and Vaschetto, S., Conjugate Heat Transfer Analysis of Integrated Brushless Generators for More Electric Engines, IEEE Transactions on Industry Applications, 2014, vol. 50, no. 4, pp. 2467–2475.

    Article  Google Scholar 

  6. Levin, A.B., Lifshitz, E.Ya., and Yukhnin, M.M., Experience in Developing the Turbogenerators Built into the Gas Turbine Engines and Prospects of Their Development, Aviatsionnaya Promyshlennost’, 2006, no 1, pp. 5–10.

    Google Scholar 

  7. Wang, J., Atallah, K., Zhu, Z.Q., and Howe, D., Modular Three-Phase Permanent-Magnet Brushless Machines for In-Wheel Applications, IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 5, pp. 2714–2720.

    Article  Google Scholar 

  8. Global Head of Controls and Electrical Engineering, URL: http://snfieeecscorg/sites/ieeecscorg/files/ LuongoC_2AP01pdf.

  9. Liu, Sam Shiqiang, Recent Developments in High-Temperature Permanent Magnet Materials, in Advanced Magnetic Materials, 2006, Springer, pp. 1329–1377.

  10. Vavilov, V.E., Application of High-Speed Micro Turbine Generators in the Electric Industry, Life Science Journal, 2014, vol. 11, no. 8, pp. 322–325.

    Google Scholar 

  11. Gerasin, A.A., Chuyanov, G.A., Ismagilov, F.R., Khairullin, I.H., and Vavilov, V.E., et al., RU Patent 140839, Byul. Izobr., 2014.

    Google Scholar 

  12. Vavilov, V.E., Khairullin, I.H., and Ismagilov, F.R., A Mathematical Model of Transient Thermal Processes in a Contactless Magnetoelectric Machine, Elektrotekhnicheskie i Informatsionnye Kompleksy i Sistemy, 2013, vol. 9, no. 3, pp. 8–14.

    Google Scholar 

  13. Vavilov, V.E., Khairullin, I.H., and Ismagilov, F.R., A Technique of Material Selection Criterion for a Stator of Magnetic Electromechanical Energy Converters, Trudy VNIIEM, Voprosy Elektromekhaniki, 2014, vol. 139, no. 2, pp. 11–16.

    Google Scholar 

  14. Ismagilov, F.R., Khairullin, I.H., and Vavilov, V.E., A Mathematical Model of Synchronous Generator Taking into Account the Processes in the Bearing Supports, Izv. Akademii Nauk. Energetika, 2014, no. 2, pp. 136–142.

    Google Scholar 

  15. Ismagilov, F.R., Khairullin, I.H., and Vavilov, V.E., Determination of Pole Overlap of High Speed Magneto Machines with Cylindrical High-Coercivity Magnets, Elektrichestvo, 2013, no. 11, pp. 51–53.

    Google Scholar 

  16. Voldek, A.I. and Popov, V.V., Electricheskie mashiny. Mashiny peremennogo toka (Electrical Machines. Alternating Current Machines), Saint Petersburg: Energiya, 2008.

    Google Scholar 

  17. Ismagilov F.R., Gerasin, A.A. Khairullin, I.H., and Vavilov, V.E., Elektromekhanicheskie sistemy s vysokokoertsitivnymi postoyannymi magnitami (Electromechanical Systems with High-Coercivity Permanent Magnets), Moscow: Mashinostroenie, 2014.

    Google Scholar 

  18. Voldek, A.I., Electricheskie mashiny (Electrical Machines), Leningrad: Energiya, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Yakubov.

Additional information

Original Russian Text © F.R. Ismagilov, I.Kh. Khairullin, V.E. Vavilov, D.R. Farrakhov, A.M. Yakupov, V.I. Bekuzin, 2016, published in Izvestiya VUZ, Aviatsionnaya Tekhnika, 2016, No. 1, pp. 98–102.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismagilov, F.R., Khairullin, I.K., Vavilov, V.E. et al. A high-temperature frameless starter-generator integrated into an aircraft engine. Russ. Aeronaut. 59, 107–111 (2016). https://doi.org/10.3103/S1068799816010177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799816010177

Keywords

Navigation