Skip to main content
Log in

Comparison of two configurations of a starter-generator integrated into the aircraft engine

  • Aircraft and Rocket Engine Design and Development
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

An optimal design of the starter-generator integrated into aircraft engines is studied. The authors give a review for modern designs and technical solutions of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Secunde, R.R., Macosko, R.P., and Repas, D.S., Integrated Engine-Generator Concept for Aircraft Electric Secondary Power, URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720018387.pdf.

  2. Morioka Noriko, Takeuchi Michiya, and Oyori Hitoshi, Moving to an All-Electric Aircraft System, IHI Engineering Review, 2014, vol. 47, no. 1, pp. 33–39.

    Google Scholar 

  3. Tosetti, M., Maggiore, P., Cavagnino, A., and Vaschetto, S., Conjugate Heat Transfer Analysis of Integrated Brushless Generators for More Electric Engines, Proc. of the 5th Annual IEEE Energy Conversion Congress and Exhibition, 2013, Denver, pp. 1518–1525.

    Google Scholar 

  4. Boglietti, A., Cavagnino, A., Staton, D.A., and Popescu M., Experimental Assessment of End Region Cooling Arrangements in Induction Motor Endwindings, IET Electric Power Applications, 2011, vol. 5, no. 2, pp. 203–209.

    Article  Google Scholar 

  5. Van Der Geest, M., Polinder, H., Ferreira, J.A., and Zeilstra, D., Machine Selection and Initial Design of an Aerospace Starter/Generator, Proc. of the IEEE Int. Electric Machines and Drives Conference, 2013, Chicago, pp. 196–203.

    Google Scholar 

  6. Ganev, E., High-Performance Electric Drives for Aerospace More Electric Architectures, Proc. of the IEEE Power Engineering Society Meeting, 2007, Tampa, pp. 1–8.

    Google Scholar 

  7. Gureev, V.M., Mats, E.B., Ivanova, V.N., Gureev, M.V., Malyshkin, D.A., and Agalakov, Yu.R., Processing Feasibilities of Enhancing the GTE-Based Electric Power Plant Efficiency, Izv.Vuz. Av. Tekhnika, 2013, vol. 56, no. 2, pp. 57–60 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 2, pp. 179–184].

    Google Scholar 

  8. Gerashchenko, A.N., Kulikov, N.I., and Makarenko, A.V., Method of Energy Efficiency Assessment for Power Supply of Autonomous Drive Systems for Perspective Mobile Objects, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 94–98 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 461–465].

    Google Scholar 

  9. Wang, J. and Howe, D., Advanced Electrical Machines for New and Emerging Applications, URL: http://www.prizz.fi/sites/default/files/tiedostot/linkki1ID332.pdf

  10. Ismagilov, F.R., Khairullin, I.Kh., Vavilov, V.E., Farrakhov, D.R., Yakupov, A.M., and Bekuzin, V.I., A High-Temperature Frameless Starter-Generator Integrated into an Aircraft Engine, Izv.Vuz. Av. Tekhnika, 2019, vol. 59, no. 1, pp. 98–102 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 1, pp. 107–111].

    Google Scholar 

  11. Vavilov, V.E., Ismagilov F.R., Khairullin, I.Kh., and Karimov, R.D., High Temperature Electromechanical Energy Converters that Can Be Integrated into Aircraft Engine. Prospects and Design Problems, Aviakosmicheskoe Priborostroenie, 2015, no. 9, pp. 48–56.

    Google Scholar 

  12. Cavagnino, A., Li, Z., Tenconi, A., and Vaschetto, S., Integrated Generator for More Electric Engine: Design and Testing of a Scaled-Size Prototype, IEEE Trans. on Industry Applications, 2013, vol. 49, no. 5, pp. 2034–2043.

    Article  Google Scholar 

  13. Besnard, J.P., Biais, F., and Martinez, M., Electrical Rotating Machines and Power Electronics for New Aircraft Equipment Systems, Proc. of the 25th Congress of the International Council of the Aeronautical Sciences, 2006, Hamburg, pp. 85-87.

    Google Scholar 

  14. Permanent Magnets SmCoFeCuZr with Increased Operating Temperature from 400 to 600 °C, URL: http://www.poz-progress.ru/index.php?page=about&pid=37.

  15. Ismagilov F.R., Gerasin, A.A. Khairullin, I.H., and Vavilov, V.E., Elektromekhanicheskie sistemy s vysokokoertsitivnymi postoyannymi magnitami (Electromechanical Systems with High-Coercivity Permanent Magnets), Moscow: Mashinostroenie, 2014.

    Google Scholar 

  16. Volokitina, E.V., Kovyasin, V. I., Vlasov, A.I., and Nikitin, V.V., Autonomous System of Power Supply of the Automatic Control System of an Aircraft Engine, Elektronika i Elektrooborudovanie Transporta, 2015, no. 3, pp. 14–20.

    Google Scholar 

  17. Ganev, E., Bansal, M.L., and Warr, W.H., US Patent 7276871, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Yakupov.

Additional information

Original Russian Text © F.R. Ismagilov, I.Kh. Khairullin, V.E. Vavilov, A.M. Yakupov, 2017, published in Izvestiya VUZ, Aviatsionnaya Tekhnika, 2017, No. 3, pp. 133–137.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismagilov, F.R., Khairullin, I.K., Vavilov, V.E. et al. Comparison of two configurations of a starter-generator integrated into the aircraft engine. Russ. Aeronaut. 60, 463–468 (2017). https://doi.org/10.3103/S1068799817030217

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799817030217

Keywords

Navigation