Skip to main content
Log in

AlSi10Mg Alloy Samples Produced by Selective Laser Melting

  • Published:
Russian Engineering Research Aims and scope

Abstract

Samples produced from AlSi10Mg alloy powder by three-dimensional printing (selective laser melting) with different parameters are experimentally investigated. The samples produced are tested in extension, compression, and three-point flexure. The test results are graphically displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Brandl, E., Heckenberger, U., Holzinger, V., and Buchbinder, D., Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior, Mater. Des., 2012, vol. 34, pp. 159–169. https://doi.org/10.1016/j.matdes.2011.07.067

    Article  Google Scholar 

  2. Buchbinder, D., Schleifenbaum, H., Heidrich, S., et al., High power Selective Laser Melting (HP SLM) of aluminum parts, Phys. Procedia, 2011, vol. 12, part 1, pp. 271–278. https://doi.org/10.1016/j.phpro.2011.03.035

    Article  Google Scholar 

  3. Kempen, K., Thijs, L., Van Humbeeck, J., and Kruth, J.-P., Processing AlSi10Mg by selective laser melting: Parameter optimization and material characterization, Mater. Sci. Technol., 2015, vol. 31, no. 8, pp. 917–923. https://doi.org/10.1179/1743284714Y.0000000702

    Article  Google Scholar 

  4. Maskery, I., Aboulkhair, N.T., Corfield, M.R., et al., Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography, Mater. Charact., 2016, vol. 111, pp. 193–204. https://doi.org/10.1016/j.matchar.2015.12.001

    Article  Google Scholar 

  5. Babaytsev, A.V., Orekhov, A.A., and Rabinskiy, L.N., Properties and microstructure of AlSi10Mg samples obtained by selective laser melting, Nanosci. Technol. Int. J., 2020, vol. 11, no. 3, pp. 213–222. https://doi.org/10.1615/NanoSciTechnolIntJ.2020034207

    Article  Google Scholar 

  6. Amato, K.N., Gaytan, S.M., Murr, L.E., et al., Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater., 2012, vol. 60, no. 5, pp. 2229–2239. https://doi.org/10.1016/j.actamat.2011.12.032

    Article  Google Scholar 

  7. Dehoff, R.R., Kirka, M., Sames, W.J., et al., Site specific control of crystallographic grain orientation through electron beam additive manufacturing, Mater. Sci. Technol., 2015, vol. 31, no. 8, pp. 931–938. https://doi.org/10.1179/1743284714Y.0000000734

    Article  Google Scholar 

  8. Li, S., Wei, Q., Shi, Y., et al., Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting, J. Mater. Sci. Technol., 2015, vol. 31, no. 9, pp. 946–952. https://doi.org/10.1016/j.jmst.2014.09.020

    Article  Google Scholar 

  9. Parimi, L.L., Ravi, G., Clark, D., and Attallah, M.M., Microstructural and texture development in direct laser fabricated IN718, Mater. Charact., 2014, vol. 89, pp. 102–111. https://doi.org/10.1016/j.matchar.2013.12.012

    Article  Google Scholar 

  10. Brandl, E., Baufeld, B., Leyens, C., and Gault, R., Additive manufactured Ti-6A1-4V using welding wire: Comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications, Phys. Procedia, 2010, vol. 5, part B, pp. 595–606. https://doi.org/10.1016/j.phpro.2010.08.087

  11. Edwards, P. and Ramulu, M., Fatigue performance evaluation of selective laser melted Ti–6Al–4V, Mater. Sci. Eng., A, 2014, vol. 598, pp. 327–337. https://doi.org/10.1016/j.msea.2014.01.041

    Article  Google Scholar 

  12. Thijs, L., Verhaeghe, F., Craeghs, T., et al., A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 2010, vol. 58, no. 9, pp. 3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  13. Yu, J., Rombouts, M., Maes, G., and Motmans, F., Material properties of Ti6Al4V parts produced by laser metal deposition, Phys. Procedia, 2012, vol. 39, pp. 416–424. https://doi.org/10.1016/j.phpro.2012.10.056

    Article  Google Scholar 

  14. Vandenbroucke, B. and Kruth, J., Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping J., 2007, vol. 13, no. 4, pp. 196–203. https://doi.org/10.1108/13552540710776142

    Article  Google Scholar 

  15. Xin, X., Xiang, N., Chen, J., et al., Corrosion characteristics of a selective laser melted Co–Cr dental alloy under physiological conditions, J. Mater. Sci., 2012, vol. 47, pp. 4813–4820. https://doi.org/10.1007/s10853-012-6325-2

    Article  Google Scholar 

  16. Murr, L.E. et al., Microstructures and properties of 17‑4 PH stainless steel fabricated by selective laser melting, J. Mater. Res. Technol., 2012, vol. 1, pp. 167–177.

    Article  Google Scholar 

  17. Niendorf, T., Leuders, S., Riemer, A., et al., Highly anisotropic steel processed by selective laser melting, Metall. Mater. Trans. B, 2013, vol. 44, pp. 794–796. https://doi.org/10.1007/s11663-013-9875-z

    Article  Google Scholar 

  18. Yasa, E. and Kruth, J.P., Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting, Procedia Eng., 2011, vol. 19, pp. 389–395.

    Article  Google Scholar 

  19. Spierings, A.B., Schoepf, M., Kiesel, R., and Wegener, K., Optimization of SLM productivity by aligning 17-4PH material properties on part requirements, Rapid Prototyping J., 2014, vol. 20, pp. 444–448.

    Article  Google Scholar 

  20. Starr, T.L., Rafi, K., Stucker, B., and Scherzer, C.M., Controlling phase composition in selective laser melted stainless steels, Proc. 23rd Annu. Int. Solid Freeform Fabrication Symp.: An Additive Manufacturing Conf. (SFF 2012), Univ. Texas, 2012, pp. 439–446.

  21. Yadollahi, A., Shamsaei, N., Thompson, S.M., et al., Fatigue behavior of selective laser melted 17-4 PH stainless steel, Proc. 26th Int. Solid Freeform Fabrication Symp., 2015, pp. 721–731.

  22. Casalino, G., Campanelli, S.L., Contuzzi, N., and Ludovico, A.D., Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel, Opt. Laser Technol., 2015, vol. 65, pp. 151–158.

    Article  Google Scholar 

  23. Kempen, K., Yasa, E., Thijs, L., et al., Microstructure and mechanical properties of selective laser melted 18Ni-300 steel, Phys. Procedia, 2011, vol. 12, pp. 255–263.

    Article  Google Scholar 

  24. Tushavina, O.V., Kriven, G.I., and Hein, T.Z., Study of thermophysical properties of polymer materials enhanced by nanosized particles, Int. J. Circuits, Syst. Signal Process., 2021, vol. 15, pp. 1436–1442. https://doi.org/10.46300/9106.2021.15.155

    Article  Google Scholar 

  25. Zin Hein, T., Garibyan, B.A., Vakhneev, S.N., Tushavina, O.V., and Formalev, V.F., Analytical study of joint heat transfer between a gasdynamic boundary layer and an anisotropic strip, INCAS Bull., 2020, vol. 12, pp. 233–243. https://doi.org/10.13111/2066-8201.2020.12.S.22

    Article  Google Scholar 

  26. Tushavina, O.V., Coupled heat transfer between a viscous shock gasdynamic layer and a transversely streamlined anisotropic half-space, INCAS Bull., 2020, vol. 12, pp. 211–220. https://doi.org/10.13111/2066-8201.2020.12.S.20

    Article  Google Scholar 

  27. Pronina, P.F., Sun, Y., and Tushavina, O.V., Mathematical modelling of high-intensity heat flux on the elements of heat-shielding composite materials of a spacecraft, J. Appl. Eng. Sci., 2020, vol. 18, pp. 693–698. https://doi.org/10.5937/jaes0-28086

    Article  Google Scholar 

  28. Formalev, V.F., Kolesnik, S.A., and Kuznetsova, E.L., Heat and mass transfer on the side surfaces of blunt nose parts of hypersonic aircraft, High Temp., 2022, vol. 60, pp. S288–S291. https://doi.org/10.1134/S0018151X21050060

    Article  Google Scholar 

  29. Starovoitov, E.I., Zakharchuk, Y.V., Kuznetsova, E.L., and Kuznetsova, E.L., Elastic circular sandwich plate with compressible filler under axially symmetrical thermal force load, J. Balk. Tribol. Assoc., 2021, vol. 27, pp. 175–188.

    Google Scholar 

  30. Kuznetsova, E.L. and Sha, M., Investigation of thermophysical properties of nanomagnetite-based polymer materials, Int. J. Circuits, Syst. Signal Process., 2021, vol. 15, pp. 1527–1533. https://doi.org/10.46300/9106.2021.15.165

    Article  Google Scholar 

  31. Bugaev, N.M., Kuznetsova, E.L., and Ko, K.Y., Thermophysical and magnetic properties of magnetite–polyethylene composite, Int. J. Mech., 2021, vol. 15, pp. 165–171. https://doi.org/10.46300/9104.2021.15.19

    Article  Google Scholar 

  32. Zaitsev, A.A., Lopatin, S.S., Fozilov, T.T., and Babaytsev, A.V., Application of a pantographic design obtained by the method of SLM printing and study of the influence of postprocessing with application of damping coatings, J. Mach. Manuf. Reliab., 2023, vol. 52, pp. 361–366. https://doi.org/10.3103/S1052618823040180

    Article  Google Scholar 

  33. Solyaev, Y.O., Ustenko, A.D., Babaytsev, A.V., and Dobryanskiy, V.N., Improved mechanical performance of quasi-cubic lattice metamaterials with asymmetric joints, Sci. Rep., 2023, vol. 13, p. 14846. https://doi.org/10.1038/s41598-023-41614-3

    Article  Google Scholar 

  34. Fozilov, T.T., Yakovlev, M.G., and Babaytsev, A.V., The effect of thermal treatment on weld structure of the VZh178P alloy after rotational friction welding, J. Mach. Manuf. Reliab., 2023, vol. 52, pp. 236–240. https://doi.org/10.3103/S1052618823030044

    Article  Google Scholar 

  35. Babaytsev, A.V. and Polyakov, P.O., Housings with internal cooling channels produced by selective laser melting, Russ. Eng. Res., 2023, vol. 43, pp. 873–876. https://doi.org/10.3103/S1068798X23070055

    Article  Google Scholar 

  36. Babaytsev, A., Nikitin, A., and Ripetskiy, A., VHCF of the 3D-printed aluminum alloy AlSi10Mg, Inventions, 2023, vol. 8, no. 1, p. 33. https://doi.org/10.3390/inventions8010033

    Article  Google Scholar 

  37. Hein, T.Z., Babaytsev, A.V., and Ripetskiy, A.V., Effect of build atmosphere on the surface roughness of AlSi10Mg samples produced by selective laser melting, Nanosci. Technol. Int. J., 2022, vol. 13, pp. 1–9. https://doi.org/10.1615/NanoSciTechnolIntJ.2021038846

    Article  Google Scholar 

  38. Solyaev, Y. and Babaytsev, A., Direct observation of plastic shear strain concentration in the thick GLARE laminates under bending loading, Composites, Part B, 2021, vol. 224, p. 109145. https://doi.org/10.1016/j.compositesb.2021.109145

    Article  Google Scholar 

  39. Babaytsev, A.V., Astapov, A.N., Ripetskiy, A.V., and Sha, M., Verification of mechanical properties and surface topography of PH1 stainless steel samples obtained by selective laser melting, Periodic. Eng. Nat. Sci., 2021, vol. 9, pp. 417–432. https://doi.org/10.21533/pen.v9i4.2336

    Article  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Ministry of Science and Higher Education (project FSFF-2023-0004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Orekhov, L. N. Rabinskiy or T. S. Tereshchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orekhov, A.A., Rabinskiy, L.N. & Tereshchenko, T.S. AlSi10Mg Alloy Samples Produced by Selective Laser Melting. Russ. Engin. Res. 44, 383–388 (2024). https://doi.org/10.3103/S1068798X24700023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X24700023

Keywords:

Navigation