Skip to main content
Log in

Production of Ultrafine Granules from High-Strength Aluminum Alloys

  • Published:
Russian Engineering Research Aims and scope

Abstract

The production of granules from V95 and V96ts high-strength aluminum alloys with elevated Zr content (up to 0.5 at %) is considered; the granules are produced by fast solidification of melt droplets. A technology is developed for the production of pressed board from the granules, while retaining the fine-grain structure. That ensures excellent mechanical properties of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Kolpashnikov, A.I. and Efremov, A.V., Granulirovannye materialy (Granular Materials), Moscow: Metallurgiya, 1977.

  2. Dobatkin, V.I., Slitki alyuminievykh splavov (Ingots of Aluminum Alloys), Sverdlovsk: Metallurgizdat, 1960.

  3. Dobatkin, V.I. and Elagin, V.I., Granuliruemye alyuminievye splavy (Granulated Aluminum Alloys), Moscow: Metallurgiya, 1981.

  4. RF Patent 2032498.

  5. USSR Inventor’s Certificate no. 403445.

  6. Murr, L.E. and Gaytan, S.M., Electron beam melting, Compr. Mater. Process., 2014, vol. 10, pp. 135–161.

    Article  Google Scholar 

  7. Samal, S., Thermal plasma technology: The prospective future in material processing, J. Cleaner Prod., 2017, vol. 142, pp. 3131–3150.

    Article  Google Scholar 

  8. Angelo, P.C. and Subramanian, R., Powder Metallurgy: Science, Technology and Applications, PHI Learning Pvt., 2008.

    Google Scholar 

  9. Mohanty, T., Tripathi, B., Mahata, T., and Sinha, P., Arc plasma assisted rotating electrode process for preparation of metal pebbles, Int. Symp. “Discharges and Electrical Insulation in Vacuum,” 2014, pp. 741–744.

  10. Karlsson, J., Snis, A., Engqvist, H., and Lausmaa, J., Characterization and comparison of materials produced by Electron Beam Melting of two different Ti–6Al–4V powder fractions, J. Mater. Process. Technol., 2013, vol. 213, no. 12, pp. 2109–2118.

    Article  Google Scholar 

  11. Zhu, H., Tong, H., Yang, F., and Cheng, C., Plasma-assisted preparation and characterization of spherical stainless steel powders, Mater. Process. Technol., 2018, vol. 252, pp. 559–566.

    Article  Google Scholar 

  12. Sentyurina, Zh.A., Production of spherical powders from alloys based on nickel aluminide NiAl for additive technologies, Cand. Sci. (Eng.) Dissertation, Moscow: Mosk. Inst. Stali Splavov, 2016.

  13. Entezarian, M., Allaire, F., Tsantrizos, P., and Drew, R.A., Plasma atomization: A new process for the production of fine, spherical powders, JOM, 1996, vol. 48, no. 6, pp. 53–55. https://doi.org/10.1007/BF03222969

    Article  Google Scholar 

  14. Bojarevics, V., Roy, A., and Pericleous, K., Numerical model of electrode induction melting for gas atomization, Comput. Math. Electr. Electron. Eng., 2011, vol. 30, no. 5, pp. 1455–1466.

    Article  Google Scholar 

  15. Baskoro, A.S., and Supriadi, S., and Dharmanto, Review on plasma atomizer technology for metal powder, MATEC Web Conf., 2019, vol. 269, p. 05004. https://doi.org/10.1051/matecconf/201926905004

  16. Xia, Y., Khezzar, L., Alshehhi, M., and Hardalupas, Y., Droplet size and elocity characteristics of water-air impinging jet atomizer, Multiphase Flow, 2017, vol. 94, pp. 31–43.

    Article  Google Scholar 

  17. Skuratov, A.P. and P’yanykh, A.A., Numerical research of speed cooling a drop aluminium alloy in the water environment, Nauchn. Probl. Transp. Sib. Dal’n. Vostoka, 2009, no. 1, pp. 233–235.

  18. Skuratov, A.P. and Pianykh, A.A., Heat transfer at granulation of lead-containing aluminum alloys in aqueous medium, Thermophys. Aeromech., 2012, vol. 19, pp. 121–127. https://doi.org/10.1134/S0869864312010131

    Article  Google Scholar 

  19. Launder, B.E. and Spalding, D.B., Lectures in Mathematical Models of Turbulence. London: Academic, 1972, pp. 157–162.

    MATH  Google Scholar 

  20. RF Patent 2117556.

  21. GOST (State Standard) 4784–2019: Aluminium and Wrought Aluminium Alloys. Grades, Moscow: Standartinform, 2019.

  22. RF Patent 2467830C1.

  23. Teleshov, V.V., Fundamental relationship of aluminum alloy structure modification during solidification with different cooling rates, Tekhnol. Legk. Splavov, 2015, no. 2, pp. 13–18.

  24. Eskin, G.I., New mechanism of metallic material solidification (scientific discovery made at VILS), Tekhnol. Legk. Splavov, 2010, no. 1, pp. 7–10.

  25. Dobatkin, V.I., Eskin, G.I., and Borovikova, S.I., On the formation of the dendritic structure of the ingot during ultrasonic treatment of the melt during crystallization, Tekhnol. Legk. Splavov, 1971, no. 6, pp. 9–17.

  26. Kovka i shtampovka: Spravochnik, Tom 1: Materialy i nagrev. Oborudovanie. Kovka (Forging and Stamping: Handbook, vol. 1: Materials and Heating. Equipment. Forging), Semenov, E.I., Ed., Moscow: Mashinostroenie, 1985.

  27. Promyshlennye alyuminievye splavy (Industrial Aluminum Alloys), Kvasov, F.I. and Fridlyander, I.N., Eds., Moscow: Metallurgiya, 1972.

    Google Scholar 

  28. Belokopytov, V.I., Development of a forging technique based on pre-compacted aluminium alloy granules, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2016, vol. 14, no. 3, pp. 25–31.

  29. Galkin, E.V. and Zharov, M.V., The prospective technology of production of metal materials grains with extra high rate of solidification, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 1005, p. 012020. https://doi.org/10.1088/1757-899X/1005/1/012020

  30. Zharov, M.V., Investigation of the properties of granular materials of the Al–Cu–Mg system pressed from granules obtained using centrifugation technology at ultrahigh cooling speeds, Tekhnol. Mashinostr., 2021, no. 4, pp. 5–9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zharov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharov, M.V. Production of Ultrafine Granules from High-Strength Aluminum Alloys. Russ. Engin. Res. 42, 1143–1148 (2022). https://doi.org/10.3103/S1068798X22110272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X22110272

Keywords:

Navigation