Skip to main content
Log in

Low-Cycle Fatigue of Monocrystalline Heat-Resistant Nickel-Based Alloy

  • Published:
Russian Engineering Research Aims and scope

Abstract

Low-cycle fatigue of monocrystalline heat-resistant nickel-based alloy with crystallographic orientation 〈001〉 in rigorous loading is studied, at operational temperatures. The field asymmetry is expressed as a function of the number of cycles to failure. The fatigue curve is compared with predictions based on the short-term strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Ospennikova, O.G., Petrushin, N.V., and Visik, E.M., Single-crystal nickel-based superalloy of a new generation with low-density, Aviats. Mater. Tekhnol., 2015, no. 2 (35), pp. 14–25. https://doi.org/10.18577/2071-9140-2015-0-2-14-25. http://www.journal.viam.ru. Accessed May 11, 2021.

  2. Kablov, E.N., Ospennikova, O.G., and Petrushin, N.V., New single crystal heat-resistant intermetallic γ′-based alloy for GTE blades, Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 34–40. https://doi.org/10.18577/2071-9140-2015-0-1-34-40. http://www.journal.viam.ru. Accessed May 11, 2021.

  3. Petrushin, N.V., Ospennikova, O.G., and Svetlov, I.L., Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines, Aviats. Mater. Tekhnol., 2017, no. S, pp. 72–103. https://doi.org/10.18577/2071-9140-2017-0-S-72-103. http://www.journal.viam.ru. Accessed May 10, 2021.

  4. Ospennikova, O.G., Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review), Aviats. Mater. Tekhnol., 2016, no. 1 (40), pp. 3–19. https://doi.org/10.18577/2071-9140-2016-0-1-3-19. http://www.journal.viam.ru. Accessed May 18, 2021.

  5. Kablov, E.N., Innovative developments of FSUE “VIAM” SSC of RF on realization of “Strategic directions of the development of materials and technologies of their processing for the period until 2030”, Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33. https://doi.org/10.18577/2071-9140-2015-0-1-3-33. http://www.journal.viam.ru. Accessed May 18, 2021.

  6. Kablov, E.N., Ospennikova, O.G., Lomberg, B.S., and Sidorov, V.V., Priority directions of development of technologies for the production of heat-resistant materials for aircraft engine building, Probl. Chern. Metall. Materialoved., 2013, no. 3, pp. 47–54.

  7. Golubovskii, E.R., Svetlov, I.L., Petrushin, N.V., et al., Low-cycle fatigue of single crystals of heat-resistant nickel alloys at elevated temperatures, Deform. Razrush. Mater., 2009, no. 8, pp. 41–48.

  8. Gorbovets, M.A., Bazyleva, O.A., Belyaev, M.S., and Khodinev, I.A., Low-cycle fatigue of a monocrystalline intermetallic alloy of the VKNA type under “hard” loading conditions, Metallurg, 2014, no. 8, pp. 111–114.

  9. Khodinev, I.A. and Monin, S.A., Anisotropy of low cycle fatigue characteristics of single-crystal heat-resistant nickel alloys, Tr. Vseross. Inst. Aviats. Mater., 2020, no. 10 (92), pp. 97–105. https://doi.org/10.18577/2307-6046-2020-0-10-97-105. http://www.viam-works.ru. Accessed May 1, 2021.

  10. Zhong, Z., Gu, Y., Yuan, Y., et al., On the low cycle fatigue behaviour of a Ni-based superalloy containing high Co and Ti contents, Mater. Sci. Eng., A, 2012, vol. 552, pp. 434–443.

    Article  Google Scholar 

  11. GOST (State Standard) 25.502-79: Strength Analysis and Testing in Machine Building. Methods of Metals Mechanical Testing. Methods of Fatigue Testing, Moscow: Standartinform, 2005.

  12. ASTM E606/E606M-19: Standard Test Method for Strain-Controlled Fatigue Testing. American Society for Testing and Materials, 2018.

  13. Gorbovets, M.A., Khodinev, I.A. and Ryzhkov, P.V., Equipment for testing carrying out the strain-controlled low-cycle fatigue, Tr. Vseross. Inst. Aviats. Mater., 2018, no. 9 (69), pp. 51–60. https://doi.org/10.18577/2307-6046-2018-0-9-51-60. http://www.viam-works.ru. Accessed July 1, 2020.

  14. Rekomendatel’nyi tsirkulyar no. RTS-AP-33.15-1: Metodicheskie rekomendatsii po opredeleniyu raschetnykh znachenii kharakteristik konstruktsionnoi prochnosti metallicheskikh materialov (Recommendation Circular no. RTS-AP-33.15-1: Methodological Recommendations for Determining the Calculated Values of the Structural Strength Characteristics of Metal Materials), Moscow: Aviaizdat, 2013, pp. 32–33.

  15. GOST (State Standard) R P 50779.29-2017: Statistical Methods. Statistical Interpretation of Data. Part 6. Determination of Statistical Tolerance Intervals, Moscow: Standartinform, 2020.

  16. Troshchenko, V.T. and Khamaza, L.A., Strain–life curves of steels and methods for determining the curve parameters. Part 1. Conventional methods, Strength Mater., 2010, vol. 42, no. 6, pp. 647–659. https://doi.org/10.1007/s11223-010-9253-x

    Article  Google Scholar 

  17. Erasov, V.S. and Oreshko, E.I., Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results, Aviats. Mater. Tekhnol., 2021, no. 1 (62), pp. 80–94. https://doi.org/10.18577/2713-0193-2021-0-1-80-94. http://www.journal.viam.ru. Accessed May 15, 2021.

  18. Erasov, V.S. and Oreshko, E.I., Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests, Aviats. Mater. Tekhnol., 2020, no. 4 (61), pp. 59–70. https://doi.org/10.18577/2071-9140-2020-0-4-59-70. http://www.journal.viam.ru. Accessed March 29, 2021.

  19. Radhakrishnan, V.M., On bilinearity of the Coffin–Manson low-cycle fatigue relationship, Int. J. Fatigue, 1992, vol. 14, no. 5, pp. 305–311.

    Article  Google Scholar 

  20. Dowling, N.E., Mean stress effects in stress-life and strain-life fatigue, Fatigue Fract. Eng. Mater. Struct., 2009, vol. 32, no. 3, pp. 163–179.

    Article  Google Scholar 

  21. Manson, S.S., Fatigue: A complex subject—Some simple approximations, Exp. Mech., 1965, vol. 5, no. 7, pp. 193–226. https://doi.org/10.1007/BF02321056

    Article  Google Scholar 

  22. Muralidharan, U. and Manson, S.S., A modified universal slopes equation for estimation of fatigue characteristics of metals, J. Eng. Mater. Technol., 1988, vol. 110, no. 1, pp. 55–58. https://doi.org/10.1115/1.3226010

    Article  Google Scholar 

Download references

FUNDING

This paper forms part of the research program on problem 2.2 (Classification and Materials Research) within the Strategic Guidelines for the Development of Materials Science and Processing up to 2030 [5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gorbovets.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbovets, M.A., Khodinev, I.A., Monin, S.A. et al. Low-Cycle Fatigue of Monocrystalline Heat-Resistant Nickel-Based Alloy. Russ. Engin. Res. 42, 897–902 (2022). https://doi.org/10.3103/S1068798X22090118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X22090118

Keywords:

Navigation