Skip to main content
Log in

Fiber Metal Laminates Based on Aluminum–Lithium Alloy Sheets in New-Generation Aircraft

  • Published:
Russian Engineering Research Aims and scope

Abstract

Fiber metal laminates based on aluminum–lithium alloy sheets are considered. The basic characteristics of such materials are considered as a function of their laminar structure. Tests show that laminar hybrids are preferable to traditional aluminum-alloy structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33. https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  2. Kablov, E.N., Antipov, V.V., and Klochkova, Yu.Yu., New generation aluminum-lithium alloys and laminated aluminum-glass-reinforced plastics based on them, Tsvetn. Met., 2016, no. 8 (884), pp. 86–91.

  3. Antipov, V.V., Klochkova, Yu.Yu., and Romanenko, V.A., Modern aluminum and aluminum-lithium alloys, Aviats. Mater. Tekhnol., 2017, suppl., pp. 195–211. https://doi.org/10.18577/2071-9140-2017-0-S-195-211

  4. Kablov, E.N., Antipov, V.V., Senatorova, O.G., and Lukina, N.F., A new class of layered aluminum-glass plastics based on an aluminum-lithium alloy 1441 with reduced density, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mahsinostr., 2011, suppl. 2, pp. 174–183.

  5. Shestov, V.V., Antipov, V.V., Senatorova, O.G., et al., Structural laminate aluminum-glass-fiber materials 1441-sial, Met. Sci. Heat Treat., 2014, vol. 55, nos. 9–10, pp. 483–485.

    Article  Google Scholar 

  6. Antipov, V.V., Serebrennikova, N.Yu., Senatorova, O.G., et al., Hybrid laminated materials with slow fatigue-crack development, Russ. Eng. Res., 2017, vol. 37, no. 3, pp. 195–199. https://doi.org/10.3103/S1068798X17030030

    Article  Google Scholar 

  7. Beumler, Th., Flying GLARE, PhD Thesis, Delft: Delft Univ. Technol., 2004.

  8. Vlot, A., Glare: History of the Development of a New Aircraft Material, Dordrecht: Springer-Verlag, 2001.

    Google Scholar 

  9. Gunnink, J.W., Vlot, A., de Vries, T.J., and van der Hoeven, W., GLARE technology development 1997–2000, Appl. Compos. Mater., 2002, vol. 9, no. 4, pp. 201–219.

    Article  Google Scholar 

  10. Fridlyander, I.N., Chuistov, K.V., Berezina, A.L., et al., Alyuminii-litievye splavy: struktura i svoistva (Aluminum–Lithium Alloys: Structure and Properties) Kyiv: Naukova Dumka, 1992.

  11. Fridlyander, I.N., Sandler, V.S., and Nikol’skaya, T.I., Fatigue of aluminum-magnesium-lithium system alloys, Fiz. Met. Metalloved., 1971, vol. 32, no. 4, pp. 767–774.

    Google Scholar 

  12. Antipov, V.V., Fridlyander, I.N., Senatorova, O.G., et al., High-manufacturable Al–Li 1441 alloy and fible-metal laminates (FML) on its basis, Proc. 6th Aluminium Two Thousand Conf., Florence, 2007.

  13. Antipov, V.V., Serebrennikova, N.Yu., Nefedova, Yu.N., et al., Technological features of manufacturing parts from 1441 aluminum-lithium alloy, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2018, no. 10, pp. 17–26. https://doi.org/10.18577/2307-6046-2018-0-10-17-26

  14. Prasad, N.E., Gokhale, A., and Wanhill, R.J.H., Aluminum-Lithium Alloys: Processing, Properties, and Applications, Oxford: Elsevier, 2014.

    Google Scholar 

  15. Klochkov, G.G., Grushko, O.E., Klochkova, Yu.Yu., et al., Industrial development of high-strength V-1469 alloy of Al–Cu–Li–Mg system, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2014, no. 7, art. 1. http://www.viam-works.ru. https://doi.org/10.18577/2307-6046-2014-0-7-1-1

  16. Fridlyander, I.N., Kolobnev, N.I., and Sandler, V.S., Aluminum deformable alloys. Aluminum-lithium alloys, in Mashinostroenie. Entsiklopediya. Tom II-3. Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy (Machine Engineering: Encyclopedia, Vol. 2-3: Nonferrous Metals and Alloys. Composite Metallic Materials), Fridlyander, I.N., Kablov, E.N., Senatorova, O.G., and Shalin, R.E., Eds., Moscow: Mashinostroenie, 2001, pp. 156–185.

  17. Aluminum Standards and Data, Arlington County, VA: Aluminum Assoc., 2006.

  18. Antipov, V.V., Oreshko, E.I., Erasov, V.S., et al., Hybrid materials for application in northern conditions, Mekh. Kompoz. Mater., 2016, vol. 52, no. 5, p. 1.

    Google Scholar 

  19. Parka, S.Y., Choi, W.J., Choi, C.H., et al., Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate, Compos. Struct., 2018, vol. 185, pp. 684–698.

    Article  Google Scholar 

  20. Podzhivotov, N.Yu., Kablov, E.N., Antipov, V.V., et al., Laminated metal-polymeric materials in structural elements of aircraft, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 2, pp. 211–221.

    Article  Google Scholar 

  21. Antipov, V.V., Dobryanskii, V.N., Korolenko, V.A., et al., Evaluation of effective mechanical characteristics of laminated alumina-fiberglass under uniaxial tension, Vestn. Mosk. Aviats. Inst., 2018, vol. 25, no. 2, pp. 221–229.

    Google Scholar 

  22. Serebrennikova, N.Yu., Antipov, V.V., Senatorova, O.G., et al., Hybrid laminated materials based on aluminum-lithium alloys for aircraft wing panels, Aviats. Mater. Tekhnol., 2016, no. 3 (42), pp. 3–8. https://doi.org/10.18577/2071-9140-2016-0-3-3-8

  23. Duyunova, V.A., Nechaikina, T.A., Oglodkov, M.S., et al., Advanced developments in the field of light materials for modern aerospace technics, Tekhnol. Legk. Splavov, 2018, no. 4, pp. 28–43.

  24. Antipov, V.V., Konovalov, A.N., Serebrennikova, N.Yu., et al., Influence of the structure on the fireproof properties of fiberglass-reinforced plastics of the SIAL class and the possible use of these materials in aircraft industry, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2019, no. 1, art. 5. http://viam-works.ru/ru. https://doi.org/18577/2307-6046-2019-0-1-40-46

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kablov.

Additional information

Translated by B. Gilbert

This research was conducted as part of the program on strategic trends in materials processing up to 2030 (with particular attention to high-strength, crack-resistant laminar metallic materials) [1].

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kablov, E.N., Antipov, V.V., Girsh, R.I. et al. Fiber Metal Laminates Based on Aluminum–Lithium Alloy Sheets in New-Generation Aircraft. Russ. Engin. Res. 41, 215–221 (2021). https://doi.org/10.3103/S1068798X21030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X21030060

Keywords:

Navigation