Skip to main content
Log in

Surface Quality of AMg2 Aluminum Alloy with Ultrafine Grain Structure after Machining. 1. Turning

  • Published:
Russian Engineering Research Aims and scope

Abstract

The influence of cutting on the surface roughness and undulation of AMg2 aluminum alloy with regular and ultrafine grain structure is considered. The quantitative influence of profile filters on its surface roughness and undulation is established, on the basis of 2D parameters. In the machining of materials with ultrafine grain structure, the surface quality is better than for materials with regular grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Valiev, R., Islamgaliev, R., and Alexandrov, I., Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Res., 2000, vol. 45, no. 2, pp. 103–189.

    Article  Google Scholar 

  2. Filippov, A.V. and Gorbatenko, V.V., Influence of rake angle tool on plastic deformation in chip formation when cutting, Appl. Mech. Mater., 2014, vol. 682, pp. 525–529.

    Article  Google Scholar 

  3. Filippov, A.V., Cut-layer cross section in oblique turning by a single-edge tool, Russ Eng. Res., 2014, vol. 34, no. 11, pp. 718–721.

    Article  Google Scholar 

  4. Filippov, A.V. and Proskokov, A.V., Analysis of chip forming in metal cutting by digital correlation speckle-interferometry, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, Ser. Mashinostr., 2014, no. 2, pp. 100–113.

  5. Korovin, G.I., Filippov, A.V., Proskokov, A.V., and Gorbatenko, V.V., Cutting edge geometry effect on plastic deformation of titanium alloy, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 125, art. ID 012012.

  6. Filippov, A.V., Nikonov, A.Y., Rubtsov, V.E., et al., Vibration and acoustic emission monitoring the stability of peakless tool turning: experiment and modeling, J. Mater. Process. Technol., 2017, vol. 246, pp. 224–234.

    Article  Google Scholar 

  7. Filippov, A.V., Rubtsov, V.E., Tarasov, S.Yu., et al., Detecting transition to chatter mode in peakless tool turning by monitoring vibration and acoustic emission signals, Int. J. Adv. Manuf. Technol., 2017, vol. 10, pp. 1–13.

    Google Scholar 

  8. Filippov, A.V., Rubtsov, V.E., and Tarasov, S.Yu., Acoustic emission study of surface deterioration in tribocontacting, Appl. Acoust., 2017, vol. 117, pp. 106–112.

    Article  Google Scholar 

  9. Alfyorova, E.A. and Lychagin, D.V., Deformation relief in crystals as a way of stress relaxation, Lett. Mater., 2017, vol. 7, no. 2, pp. 155–159.

    Article  Google Scholar 

  10. Lychagin, D.V. and Alfyorova, E.A., Slip as the basic mechanism for formation of deformation relief structural element, Phys. Solid State, 2017, vol. 59, no. 7, pp. 1433–1439.

    Article  Google Scholar 

  11. Alfyorova, E.A. and Lychagin, D.V., Self-organization of plastic deformation and deformation relief in FCC single crystals, Mech. Mater., 2018, vol. 117, pp. 202–213.

    Article  Google Scholar 

  12. Lychagin, D.V., Filippov, A.V., Novitskaia, O.S., et al., Friction-induced slip band relief of Hadfield steel single crystal oriented for multiple slip deformation, Wear, 2017, vols. 374–375, pp. 5–14.

    Article  Google Scholar 

  13. Lychagin, D.V., Filippov, A.V., Kolubaev, E.A., et al., Dry sliding of Hadfield steel single crystal oriented to deformation by slip and twinning: deformation, wear, and acoustic emission characterization, Tribol. Int., 2018, vol. 119, pp. 1–18.

    Article  Google Scholar 

  14. Kuznetsov, V.P., Smolin, I.Yu., Dmitriev, A.I., et al., Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel, Surf. Coat. Technol., 2016, vol. 285, pp. 171–178.

    Article  Google Scholar 

  15. Huang, B., Kaynak, Y., Arvin, C., and Jawahir, I.S., Improved surface integrity from cryogenic machining of Al 7050–T7451 alloy with ultrafine-grained structure, Adv. Mater. Process. Technol., 2015, vol. 1, pp. 361–374.

    Google Scholar 

  16. Asl, Y.B., Meratian, M., Emamikhah, A., et al., Mechanical properties and machinability of 6061 aluminum alloy produced by equal-channel angular pressing, Proc. Inst. Mech. Eng., Part B, 2015, vol. 229, pp. 1302–1313.

    Google Scholar 

  17. Tarasov, S.Yu., Filippov, A.V., Kolubaev, E.A., and Kalashnikova, T.A., Adhesion transfer in sliding a steel ball against aluminum alloy, Tribol. Int., 2017, vol. 115, pp. 191–198.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support was provided by the Russian Science Fund (project 17-79-10013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.V., Tarasov, S.Y., Shamarin, N.N. et al. Surface Quality of AMg2 Aluminum Alloy with Ultrafine Grain Structure after Machining. 1. Turning. Russ. Engin. Res. 38, 1067–1070 (2018). https://doi.org/10.3103/S1068798X18120249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X18120249

Keywords:

Navigation