Skip to main content
Log in

Synthesis Characterization and Corrosion Inhibition of Thiourea and Phthalic Anhydride Complex with Ni(II) for Carbon Steel Alloy C1010 0.1 M Hydrochloric Acid

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The research includes synthesis of bis thiourea phthalato nickel (II) complex (PTUNi) by reaction of NiCl2⋅6H2O with 2 mol thiourea and 1 mol phthalic anhydride. The (PTUNi) complex was identified by Fourier-transform infrared spectroscopy, UV-visible spectrophotometry, mass spectrophotometry, thermogravimetric differential thermogravimetry analyses, XRD techniques and magnetic susceptibility measurements. The complex was evaluated as corrosion inhibitor for carbon steel alloy (C1010) against a corrosive medium of 0.1 M hydrochloric acid at298 K and showed the maximal efficiency of 95.23% at a concentration of 3 ppm. The effect of temperature on the inhibition behavior was studied at 308, 318 and 328 K and the inhibitor revealed reducing efficiency as temperature raised. The inhibitor behaved as mixed inhibitor. The adsorption of the inhibitor on the surface of the alloy was studied by the Timken, Frumkin, Florry-Hugin and Langmuir adsorption isotherms. The best fitted isotherm was found to be the Langmuir isotherm. The thermodynamic functions like \(\Delta G_{{{\text{ads}}}}^{^\circ }\)and \(\Delta H_{{{\text{ads}}}}^{^\circ }\)were calculated and revealed that spontaneous adsorption, was exothermic where, the inhibitor was physiochemically adsorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. El-Lateef, H.M.A., Adam, M.S.S., and Khalaf, M.M., Synthesis of polar unique 3D metal-imine complexes of salicylidene anthranilate sodium salt. Homogeneous catalytic and corrosion inhibition performance, J. Taiwan Inst. Chem. Eng., 2018, vol. 88, p. 286.

    Article  Google Scholar 

  2. Kadhima, Z.N., Mahadia, M.A., and Al-Sawaada, H.Z., Synthesis, characterization and corrosion inhibitors evaluation of some Schiff base complexes of copper(II), and molybdenum(VI), Int. J. Acad. Stud., 2016, vol. 2, no. 11, p. 446.

    Google Scholar 

  3. Goyal, M., Kumar, S., Bahadur, I., Verma, C., et al., Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review, J. Mol. Liq., 2018, vol. 256, p. 565.

    Article  Google Scholar 

  4. Liu, X., Okafor, P.C., Jiang, B., Hu, H., et al., Electrochemical study on the inhibition effect of phenanthroline and its cobalt complex as corrosion inhibitors for mild steel, J. Mater. Eng. Perform., 2015, vol. 24, no. 9, p. 3599.

    Article  Google Scholar 

  5. Alwan, W.M., Synthesis, characterization and the corrosion inhibition study of two Schiff base ligands derived from urea and thiourea and their complexes with Cu(II) and Hg(II) ions, J. Phys.: Conf. Ser., 2018, vol. 1003, no. 1, art. ID 012017. https://doi.org/10.1088/1742-6596/1003/1/012017

    Article  Google Scholar 

  6. Fawzy, A., Zaafarany, I.A., Ali, H.M., and Abdallah, M., New synthesized amino acids-based surfactants as efficient inhibitors for corrosion of mild steel in hydrochloric acid medium: Kinetics and thermodynamic approach, Int. J. Electrochem. Sci., 2018, vol. 13, no. 5, p. 4575.

    Article  Google Scholar 

  7. Fawzy, A., Abdallah, M., Zaafarany, I.A., Ahmed, S.A., et al., Thermodynamic, kinetic and mechanistic approach to the corrosion inhibition of carbon steel by new synthesized amino acids-based surfactants as green inhibitors in neutral and alkaline aqueous media, J. Mol. Liq., 2018, vol. 265, p. 276.

    Article  Google Scholar 

  8. Abdallah, M., Hazazi, O.A., Fawzy, A., El-Shafei, S., et al., Influence of N-thiazolyl-2-cyanoacetamide derivatives on the corrosion of aluminum in 0.01 M sodium hydroxide, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 5, p. 659.

    Article  Google Scholar 

  9. Awad, M., Saad, A.F., Shaaban, M.R., AL Jahdaly, B.A., et al., New insight into the mechanism of the inhibition of corrosion of mild steel by some amino acids, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1657.

    Article  Google Scholar 

  10. Hazazi, O.A., Fawzy, A., Shaaban, M.R., and Awad, I.M., Enhanced 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol inhibition of corrosion of mild steel in 0.5 M H2SO4 by Cu(II), Int. J. Electrochem. Sci., 2014, vol. 9, p. 1378.

    Google Scholar 

  11. Takroni, K.M., El-Ghamry, H.A., and Fawzy, A., Evaluation of the catalytic activities of some synthesized divalent and trivalent metal complexes and their inhibition efficiencies for the corrosion of mild steel in sulfuric acid medium, J. Inorg. Organomet. Polym. Mater., 2019, vol. 29, no. 6, p. 1927.

    Article  Google Scholar 

  12. Biswas, A., Das, D., Lgaz, H., Pal, S., et al., Biopolymer dextrin and poly (vinyl acetate) based graft copolymer as an efficient corrosion inhibitor for mild steel in hydrochloric acid: electrochemical, surface morphological and theoretical studies, J. Mol. Liq., 2019, vol. 275, p. 867.

    Article  Google Scholar 

  13. Abdallah, M., Fouda, A.S., Zaafarany, I., Fawzy, A., et al., Corrosion inhibition of iron in sulphuric acid solution by antibacterial cephalosporin, J. Am. Sci., 2013, vol. 9, no. 3, p. 209.

    Google Scholar 

  14. Bentiss, F., Lagrenee, M., Traisnel, M., and Hornez, J.C., The corrosion inhibition of mild steel in acidic media by a new triazole derivative, Corros. Sci., 1999, vol. 41, no. 4, p. 789.

    Article  Google Scholar 

  15. Hazazi, O., Fawzy, A., and Awad, M., Synergistic effect of halides on the corrosion inhibition of mild steel in H2SO4 by a triazole derivative: Kinetics and thermodynamic studies, Int. J. Electrochem. Sci., 2014, vol. 9, p. 4086.

    Google Scholar 

  16. Bentiss, F., Lagrenée, M., and Traisnel, M., 2,5-Bis(n-pyridyl)-1,3,4-oxadiazoles as corrosion inhibitors for mild steel in acidic media, Corrosion, 2000, vol. 56, no. 7, p. 733.

    Article  Google Scholar 

  17. Abdallah, M., AL Jahdaly, B.A., Salem, M.M., Fawzy, A., et al., Electrochemical behavior of nickel alloys and stainless steel in HNO3 using cyclic voltammetry technique, J. Mater. Environ. Sci., 2017, vol. 8, p. 1320.

    Google Scholar 

  18. Fuchs-Godec, R. and Pavlović, M.G., Synergistic effect between non-ionic surfactant and halide ions in the forms of inorganic or organic salts for the corrosion inhibition of stainless-steel X4Cr13 in sulphuric acid, Corros. Sci., 2012, vol. 58, p. 192.

    Article  Google Scholar 

  19. Abdallah, M., Zaafarany, I., Fawzy, A., Radwan, M.A., et al., Inhibition of aluminum corrosion in hydrochloric acid by cellulose and chitosan, J. Am. Sci., 2013, vol. 9, p. 580.

    Google Scholar 

  20. Hazazi, O.A., Fawzy, A., and Awad, M.I., Sulfachloropyridazine as an eco-friendly inhibitor for corrosion of mild steel in H2SO4 solution, Chem. Sci. Rev. Lett., 2015, vol. 4, p. 67.

    Google Scholar 

  21. ELouadi, Y., Abrigach, F., Bouyanzer, A., and Touzani, R., Corrosion inhibition of mild steel by new N-heterocyclic compound in 1 M HCl: Experimental and computational study, Pharma Chem., 2015, vol. 7, no. 8, p. 265.

    Google Scholar 

  22. Cherrak, K., Dafali, A., Elyoussfi, A., El Ouadi, Y., et al., Two new benzothiazine derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium, J. Mater. Environ. Sci., 2017, vol. 8, no. 2, p. 636.

    Google Scholar 

  23. El Ouadi, Y., Elmsellem, H., El Fal, M., Sebbar, N.K., et al., Effect of 1,5-di(prop-2-ynyl)-1H-pyrazolo[3,4-d]pyrimidine-4(5H)-thione on inhibition of mild steel corrosion in 1 M HCl, Pharma Chem., 2016, vol. 8, no. 1, p. 365.

    Google Scholar 

  24. Bader, A., Shaheen, U., Aborehab, M.A.S., El Ouadi, Y., et al., Inhibitory effect of Acacia hamulosa methanolic extract on the corrosion of mild steel, in 1 M hydrochloric acid, Bull. Chem. Soc. Ethiop., 2018, vol. 32, no. 2, p. 323.

    Article  Google Scholar 

  25. Merimi, I., El Ouadi, Y., Ansari, K.R., Oudda, H., et al., Adsorption and corrosion inhibition of mild steel by ((Z)-4-((2,4-dihydroxybenzylidene)amino)-5-methy-2,4 dihydro-3H-1,2,4-triazole-3-thione) in 1 M HCl: Experimental and computational study, Anal. Bioanal. Electrochem., 2017, vol. 9, no. 5, p. 640.

    Google Scholar 

  26. Merimi, I., El Ouadi, Y., Benkaddour, R., Lgaz, H., et al., Improving corrosion inhibition potentials using two triazole derivatives for mild steel in acidic medium: experimental and theoretical studies, Mater. Today: Proc., 2019, vol. 13, p. 920.

    Google Scholar 

  27. Shen, C., Wang, S.G., Yang, H.Y., Long, K., et al., Corrosion and corrosion inhibition by thiourea of bulk nanocrystallized industrial pure iron in dilute HCl solution, Corros. Sci., 2006, vol. 48, no. 7, p. 1655.

    Article  Google Scholar 

  28. Huong, D.Q., Duong, T., and Nam, P.C., Effect of the structure and temperature on corrosion inhibition of thiourea derivatives in 1.0 M HCl solution, ACS Omega, 2019, vol. 4, no. 11, p. 14478.

    Article  Google Scholar 

  29. Ajibade, P.A. and Zulu, N.H., Metal complexes of diisopropylthiourea: synthesis, characterization and antibacterial studies, Int. J. Mol. Sci., 2011, vol. 12, no. 10, p. 7186.

    Article  Google Scholar 

  30. Binzet, G., Kavak, G., Külcü, N., Özbey, S., Flörke, U., and Arslan, H., Synthesis and characterization of novel thiourea derivatives and their nickel and copper complexes, J. Chem., 2013, vol. 2013, art. ID 536562. https://doi.org/10.1155/2013/536562

    Article  Google Scholar 

  31. Halim, N.I.M., Kassim, K., Fadzil, A.H., and Yamin, B.M., Sintesis, pencirian dan kajian aktiviti antibakteria kompleks Cu(II) tiourea, Malays. J. Anal. Sci., 2012, vol. 16, no. 1, p. 56.

    Google Scholar 

  32. Larouj, M., Ourrak, K., El M’Rabet, M., Zarrok, H., et al., Thermodynamic study of corrosion inhibition of carbon steel in acidic solution by new pyrimidothiazine derivative, J. Mater. Environ. Sci., 2017, vol. 8, no. 11, p. 3921.

    Google Scholar 

  33. Devika, B., Doreswamy, B., and Tandon, H., Corrosion behaviour of metal complexes of antipyrine based azo dye ligand for soft-cast steel in 1 M hydrochloric acid, J. King Saud Univ. Sci., 2020, vol. 32, no. 1, p. 881.

    Article  Google Scholar 

  34. Fernandes, C.M., Alvarez, L.X., dos Santos, N.E., Barrios, A.C.M., et al., Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses, Corros. Sci., 2019, vol. 149, p. 185.

    Article  Google Scholar 

  35. Manssouri, M., El Ouadi, Y., Znini, M., Costa, J., et al., Adsorption proprieties and inhibition of mild steel corrosion in HCl solution by the essential oil from fruit of Moroccan Ammodaucus leucotrichus, J. Mater. Environ. Sci., 2015, vol. 6, no. 3, p. 631.

    Google Scholar 

  36. Radey, H.H., Khalaf, M.N., and Al-Sawaad, H.Z., Novel corrosion inhibitors for carbon steel alloy in acidic medium of 1 N HCl synthesized from graphene oxide, Open J. Org. Polym. Mater., 2018, vol. 8, no. 04, p. 53.

    Article  Google Scholar 

  37. AL-Sawaad, H.Z., Evaluation of the ceftriaxone as corrosion inhibitor for carbon steel alloy in 0.5 M of hydrochloric acid, Int. J. Electrochem. Sci., 2013, 8, p. 3105.

    Google Scholar 

  38. Fouda, A., El-morsi, M.A., Gaber, M., and Fakeeh, M., A comparative study of the corrosion inhibition of carbon steel in HCl solution by 1-[(5-mercapto-1H-1,2,4-triazole-3-yl) diazenyl] naphthalene-2-ol (HL) and its manganese complex, Chem. Data Collect., 2020, vol. 28, art. ID 100479.

  39. Fateh, A., Aliofkhazraei, M., and Rezvanian, A., Review of corrosive environments for copper and its corrosion inhibitors, Arab. J. Chem., 2020, vol. 13, no. 1, p. 481.

    Article  Google Scholar 

  40. El Aoufir, Y., Aslam, R., Lazrak, F., Marzouki, R., et al., The effect of the alkyl chain length on corrosion inhibition performances of 1,2,4-triazole-based compounds for mild steel in 1.0 M HCl: Insights from experimental and theoretical studies, J. Mol. Liq., 2020, vol. 303, art. ID 112631.

    Article  Google Scholar 

  41. Hsissou, R., Benhiba, F., About, S., Dagdag, O., et al., Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations, Inorg. Chem. Commun., 2020, vol. 115, art. ID 107858. https://doi.org/10.1016/j.inoche.2020.107858

    Article  Google Scholar 

  42. Ardakani, E.K., Kowsari, E., and Ehsani, A., Imidazolium-derived polymeric ionic liquid as a green inhibitor for corrosion inhibition of mild steel in 1.0 M HCl: experimental and computational study, Colloids Surf., A, 2020, vol. 586, art. ID 124195.

    Article  Google Scholar 

  43. Lebrini, M., Robert, F., and Roos, C., Adsorption properties and inhibition of C38 steel corrosion in hydrochloric solution by some indole derivates: temperature effect, activation energies, and thermodynamics of adsorption, Int. J. Corros., 2013, vol. 2013, art. ID 139798. https://doi.org/10.1155/2013/139798

    Article  Google Scholar 

  44. AL-Jubanawi, I.M., AL-Sawaad, H.Z., and AL-Waaly, A.A., Bis thiourea phthalato cobalt(II) complex: synthesis and studying as corrosion inhibitors for carbon steel alloy (C1010) in 0.1 M HCl, J. Mater. Environ. Sci., 2020, vol. 11, p. 1386.

    Google Scholar 

  45. El-Lateef, H.M.A., El-Sayed, A.R., Mohran, H.S., and Shilkamy, H.A.S., Corrosion inhibition and adsorption behavior of phytic acid on Pb and Pb–In alloy surfaces in acidic chloride solution, Int. J. Ind. Chem., 2019, vol. 10, no. 1, p. 31.

    Article  Google Scholar 

  46. Shukla, S.K. and Ebenso, E.E., Corrosion inhibition, adsorption behavior and thermodynamic properties of streptomycin on mild steel in hydrochloric acid medium, Int. J. Electrochem. Sci., 2011, vol. 6, no. 8, p. 3277.

    Google Scholar 

  47. El-Tabesh, R., Abdel-Gaber, A.M., Hammud, H., and Oweini, R., Effect of mixed-ligands copper complex on the corrosion inhibition of carbon steel in sulfuric acid solution, J. Bio- Tribo-Corros., 2020, vol. 6, no. 2, p. 29.

  48. Al-Sawaad, H.Z., Faili, N.T., and Essa, A.H., Evaluation of vicine as a corrosion inhibitor for carbon steel alloy, Port. Electrochim. Acta, 2019, vol. 37, no. 4. p. 205.

    Article  Google Scholar 

  49. El-Gammal, O.A., Fouda, A.E.-A.S., and Nabih, D.M., Novel Mn2+, Fe3+, Co2+, Ni2+ and Cu2+ complexes of potential OS donor thiosemicarbazide: design, structural elucidation, anticorrosion potential study and antibacterial activity, J. Mol. Struct., 2020, vol. 1204, art. ID 127495.

    Article  Google Scholar 

  50. Rao, C., Venkataraghavan, R., and Kasturi, T., Contribution to the infrared spectra of organosulphur compounds, Can. J. Chem., 1964, vol. 42, no. 1, p. 36.

    Article  Google Scholar 

  51. Zakaria, S.A., Muharam, S.H., Yusof, M.S.M., Khairul, W.M., et al., Spectroscopic and structural study of a series of pivaloylthiourea derivatives, Malays. J. Anal. Sci., 2011, vol. 15, no. 1, p. 37.

    Google Scholar 

  52. Akpomie, K.G., Fayomi, O.M., Ezeofor, C.C., Sha’Ato, R., et al., Insights into the use of metal complexes of thiourea derivatives as highly efficient adsorbents for ciprofloxacin from contaminated water, Trans. R. Soc. South Afr., 2019, vol. 74, no. 2, p. 180.

    Article  Google Scholar 

  53. Sonmez, M., Synthesis and characterization of copper(II), nickel(II), cadmium(II), cobalt(II) and zinc(II) complexes with 2-benzoyl-3-hydroxy-1-naphthylamino-3-phenyl-2-propen-1-on, Turk. J. Chem., 2001, vol. 25, no. 2, p. 181.

    Google Scholar 

  54. Ibrahim, O.B., Complexes of urea with Mn(II), Fe(III), Co(II), and Cu(II) metal ions, Adv. Appl. Sci. Res., 2012, vol. 3, no. 6, p. 18.

    Google Scholar 

  55. Ghazal, K., Shoaib, S., Khan, M., Khan, S., et al., Synthesis, characterization, X-ray diffraction study, in-vitro cytotoxicity, antibacterial and antifungal activities of nickel(II) and copper(II) complexes with acyl thiourea ligand, J. Mol. Struct., 2019, vol. 1177, p. 124.

    Article  Google Scholar 

  56. Refat, M.S., El-Deen, I.M., Zein, M.A., Adam, A.M., et al., Spectroscopic, structural and electrical conductivity studies of Co(II), Ni(II) and Cu(II) complexes derived from 4-acetylpyridine with thiosemicarbazide, Int. J. Electrochem. Sci., 2013, vol. 8, no. 7, p. 9894.

    Google Scholar 

  57. Tan, S.S., Al-Abbasi, A.A., Tahir, M.I.M., and Kassim, M.B., Synthesis, structure and spectroscopic properties of cobalt(III) complexes with 1-benzoyl-(3,3-disubstituted)thiourea, Polyhedron, 2014, vol. 68, p. 287.

    Article  Google Scholar 

  58. Monshi, A., Foroughi, M.R., and Monshi, M.R., Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano Sci. Eng., 2012, vol. 2, no. 3, p. 154.

    Article  Google Scholar 

  59. Breviglieri, S.T., Cavalheiro, E.T.G., and Chierice, G.O., Correlation between ionic radius and thermal decomposition of Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) diethanoldithiocarbamates, Thermochim. Acta, 2000, vol. 356, nos. 1–2, p. 79.

    Article  Google Scholar 

  60. El-Sawaf, A.K., El-Essawy, F., Nassar, A.A., and El-Samanody, E.A., Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand, J. Mol. Struct., 2018, vol. 1157, p. 381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadi Z. Al-Sawaad or Ahmed A. Alwaaly.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Israa M. Al-Jubanawi, Al-Sawaad, H.Z. & Alwaaly, A.A. Synthesis Characterization and Corrosion Inhibition of Thiourea and Phthalic Anhydride Complex with Ni(II) for Carbon Steel Alloy C1010 0.1 M Hydrochloric Acid. Surf. Engin. Appl.Electrochem. 57, 595–606 (2021). https://doi.org/10.3103/S1068375521050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521050057

Keywords:

Navigation