Skip to main content
Log in

Effect of a Vapor-Gas Cavity on the Pressure Field in a Limited-Volume Discharge Chamber with Rigid Walls

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract—

The pressure field in the limited-volume discharge chambers with rigid walls very often affects the efficiency of the technological processes, which is an urgent problem. As a result of the electric discharge in the liquid that fills the discharge chamber, a cavity is formed with a compressibility higher than the liquid in the chamber. This cavity is filled at the discharge stage with a nonideal plasma, and, after the discharge, it is filled with a vapor of the liquid and gases dissolved in it (a vapor-gas cavity). Its pulsations form the pressure field in the discharge chamber. A moving boundary of the vapor-gas cavity makes it difficult to calculate the pressure field in the fluid, especially after a great amount of its pulsations. At present, the role of the vapor-gas cavity is studied insufficiently in the formation of the pressure field in the discharge chamber. To determine it is the aim of the work. This research is performed based on the mathematical model of the electrical discharge in water developed earlier, which was supplemented in this article by ratios that substantially enhance the calculation precision of the discharge channel resistance and the energy released in it. It was determined that the vapor-gas cavity pulsations ensure the pressure oscillations in it in the antiphase with the pressure in the liquid. The pulsations decay slowly, therefore a static equilibrium cannot be established in the discharge chamber between the cavity and the liquid that surrounds it even after seven pulsations. The effect of change was determined in the plasma’s optical transparency on the pressure in the cavity and pressure field in the liquid, which decreases the pressure level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Gulyi, G.A., Nauchnye osnovy razryadno-impul’snykh tekhnologii (Scientific Foundations of the Discharge-Impulse Technologies), Kiev: Naukova Dumka, 1990.

  2. Kurets, V.I., Solov’ev, M.A., Zhuchkov, A.I., and Barskaya, A.V., Elektrorazryadnye tekhnologii obrabotki i razrusheniya materialov (Electrodischarge Processes of Treatment and Destruction of Materials), Tomsk: Tomsk. Politekh. Univ., 2012.

  3. Barbashova, G.A. and Vovchenko, A.I., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 2, pp. 176–180.

    Article  Google Scholar 

  4. Barbashova, G.A., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 3, pp. 260–263.

    Article  Google Scholar 

  5. Kuskova, N.I., Baklar’, V.Yu., Terekhov, A.Yu., Yushchishina, A.N., et al., Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 2, pp. 101–105.

    Article  Google Scholar 

  6. Yushchishina, A.N., Kuskova, N.I., and Chelpanov, D.I., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, pp. 203–207.

    Article  Google Scholar 

  7. Petrichenko, S.V., Listovskii, D.I., and Kuskova, N.I., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 2, pp. 134–139.

    Article  Google Scholar 

  8. Kosenkov, V.M. and Bychkov, V.M., Tech. Phys. Lett., 2017, vol. 43, pp. 774–777. https://doi.org/10.1134/S1063785017080223

    Article  Google Scholar 

  9. Rizun, A.R., Denisyuk, T.D., and Domershchikova, A.O., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 6, pp. 592–596. https://doi.org/10.3103/S1068375517060096

    Article  Google Scholar 

  10. Malyushevskaya, A.P. and Malyushevskii, P.P., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 3, pp. 263–269.

    Article  Google Scholar 

  11. Malyushevskii, P.P., Malyushevskaya, A.P., and Yushchishina, A.N., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 4, pp. 383–393.

    Article  Google Scholar 

  12. Kononov, V.Yu. and Rachkov, A.N., Elektron. Obrab. Mater., 2015, vol. 51, no. 1, pp. 118–121.

    Google Scholar 

  13. Gillard, A.J., Golovashchenko, S.F., and Mamutov, A.V., J. Manuf. Process, 2013, vol. 15, no. 2, pp. 201–218.

    Article  Google Scholar 

  14. Golovashchenko, S.F., Gillard, A.J., and Mamutov, A.V., J. Mater. Process. Technol., 2013, vol. 213, pp. 1191–1212.

    Article  Google Scholar 

  15. Melander, A., Delic, A., Bjorkblad, A., Juntunen, P., et al., Int. J. Mater. Form., 2013, vol. 6, pp. 223–231.

    Article  Google Scholar 

  16. Hassannejadasl, A., Daniel, E.G., Golovashchenko, S.F., Javad, S., et al., J. Manuf. Process, 2014, vol. 16, no. 3, pp. 391–404.

    Article  Google Scholar 

  17. Mamutov, V., Golovashchenko, S., and Mamutov, A., in Proc. 13th Int. LS-DYNA Conf., June 8–14, 2014, Detroit, 2014, pp. 1–9.

  18. Rohatgi, A.E., Stephens, V., Davies, R.W., Smith, M.T., et al., J. Mater. Process. Technol., 2012, vol. 212, pp. 1070–1079.

    Article  Google Scholar 

  19. Chachin, V.N., Shaduya, V.L., Zhuravskii, A.Yu., and Zdor, G.N., Elektrogidroimpul’snoe formoobrazovanie s ispol’zovaniem zamknutykh kamer (Electrohydroimpulse Shaping Using Closed Chambers), Minsk: Nauka i Tekhnika, 1985.

  20. Smirnov, A.P., Zhekul, V.G., Mel’kher, Yu.I., et al., Surf. Eng. Appl. Electrochem., 2018, vol. 54, no. 5, pp. 475–480. https://doi.org/10.3103/S1068375518050101

    Article  Google Scholar 

  21. Smirnov, A.P., Zhekul, V.G., and Poklonov, S.G., Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 3, pp. 233–237.

    Article  Google Scholar 

  22. Vovchenko, A.I., Kucherenko, V.V., and Shamko, V.V., J. Appl. Mech. Tech. Phys., 1978, vol. 19, no. 6, pp. 755–760.

    Article  Google Scholar 

  23. Chachin, V.N., Impul’snye metody obrabotki materialov (Pulsed Methods of Materials Processing), Minsk: Nauka i Tekhnika, 1977, pp. 44–55.

  24. Mamutov, A.V. and Mamutov, V.S., Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., 2014, vol. 190, no. 1, pp. 101–107.

    Google Scholar 

  25. Hassannejadasl, A., Simulation of electrohydraulic forming using anisotropic, rate-dependent plasticity models, PhD Thesis, Windsor, ON: Univ. of Windsor, 2014.

  26. Kosenkov, V.M. and Bychkov, V.M., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 2, pp. 167–173.

    Article  Google Scholar 

  27. Kosenkov, V.M., Tech. Phys., 2011, vol. 56, no. 10, p. 1513.

    Article  Google Scholar 

  28. Dubovenko, K.V., Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 1, pp. 28–35. https://doi.org/10.3103/S1068375513010031

    Article  Google Scholar 

  29. Shneerson, G.A., Tech. Phys., 2003, vol. 48, pp. 374–375.

    Article  Google Scholar 

  30. Titkov, V.V., Tech. Phys. Lett., 2010, vol. 36, no. 8, pp. 687–689.

    Article  Google Scholar 

  31. Goldfarb, V., Budny, R., Dunton, A., Shneerson, G., et al., in Proc. 11th IEEE Int. Pulsed Power Conf., Baltimore, MD, June 29–July 2, 1997, New York, NY: Inst. Electr. Electron. Eng., 1997.

  32. Krivitskii, E.V., Dinamika elektrovzryva v zhidkosti (Dynamics of Electrical Explosion in Liquid), Kiev: Naukova Dumka, 1986.

  33. Krivitskii, E.V. and Shamko, V.V., Perekhodnye protsessy pri vysokovol’tnom razryade v vode (Transition Processes at High-Voltage Discharge in Water), Kiev: Naukova Dumka,1979.

  34. Naugol’nykh, K.A. and Roi, N.A., Elektricheskie razryady v vode (Electric Discharges in Water), Moscow: Nauka, 1971.

  35. Krinberg, I.A., J. Appl. Mech. Tech. Phys., 1965, vol. 6, pp. 98–102.

    Article  Google Scholar 

  36. Feynman, R.P. and Hibbs, A.R.,Quantum Mechanics and Path Integrals, New York: McGraw-Hill, 1965.

    MATH  Google Scholar 

  37. Zhdanov, V.M., Yavleniya perenosa v gazakh i plazme (Transport Phenomena in Gases and Plasma), Moscow: Mosk. Inzh.-Fiz. Inst., 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kosenkov.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosenkov, V.M. Effect of a Vapor-Gas Cavity on the Pressure Field in a Limited-Volume Discharge Chamber with Rigid Walls. Surf. Engin. Appl.Electrochem. 57, 197–206 (2021). https://doi.org/10.3103/S1068375521020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521020046

Keywords:

Navigation