Skip to main content

Advertisement

Log in

Propulsion effects after laser ablation in water, confined by different geometries

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A Nd:YAG laser with 7-ns pulses and pulse energies up to 10 mJ is used to induce an optical breakdown in the front surface of an aluminum rod, covered by a water layer. The rod is part of a ballistic pendulum. In this way, we study the propulsion effects by means of coupling coefficient and energy-conversion efficiency with respect to different confining geometries, volumes of water applied to the front surface of the rod, and the distance of this surface from the laser-beam focus. Holes with different dimensions are drilled on the target surface and filled with different volumes of water to examine the influence of the confinement by the liquid (a free boundary) and a solid-surface geometry on laser ablation effects. The rod movement and the water ejection after laser ablation are acquired by a high-speed camera with 10k frames per second. The results show that the confinement by cavity substantially increases the propulsion effects by shaping the ejected flow of the liquid; while the cavitation bubble, induced inside the water layer, plays a significant role in propulsion efficiency. From the presented results, it follows that the laser-propelled rod carries below 0.5% of the total mechanical energy after propulsion, while the rest of this energy represents the kinetic energy of the ablated water. As expected, moving the target surface away from the focal position decreases the ablative-propulsion efficiency. When the focus is moved inside the solid target, the decrease occurs due to lower conversion of the pulse energy into the energy of the cavitation bubble. If the focus is moved from the surface outward, the bubble moves towards the liquid–gas interface and it is not able to efficiently eject all the liquid from the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Požar, A. Babnik, J. Možina, Opt. Express 23, 7978 (2015)

    ADS  Google Scholar 

  2. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, J. Sinko, J. Propuls. Power 26, 609 (2010)

    Google Scholar 

  3. Y.K. Bae, Phys. Proc. 38, 253 (2012)

    ADS  Google Scholar 

  4. S. Choi, T.-H. Han, A.B. Gojani, J.J. Yoh, Appl. Phys. A 98, 147 (2009)

    ADS  Google Scholar 

  5. T.T.P. Nguyen, R. Tanabe-Yamagishi, Y. Ito, Appl. Surf. Sci. 470, 250 (2019)

    ADS  Google Scholar 

  6. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. Lett. 102, 124103 (2013)

    ADS  Google Scholar 

  7. B. Han, Z.-H. Shen, J. Lu, X.-W. Ni, Opt. Lasers Eng. 48, 950 (2010)

    Google Scholar 

  8. Z.Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, Y.T. Li, Appl. Phys. A 85, 441 (2006)

    ADS  Google Scholar 

  9. Z. Zheng, J. Zhang, X. Lu, Z. Hao, X. Yuan, Z. Wang, Z. Wei, Appl. Phys. A 83, 329 (2006)

    ADS  Google Scholar 

  10. C.R. Phipps, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, T.R. King, J. Appl. Phys. 64, 1083 (1988)

    ADS  Google Scholar 

  11. P. Gregorčič, J. Zadravec, J. Možina, M. Jezeršek, Appl. Phys. A 117, 353 (2014)

    ADS  Google Scholar 

  12. J. Diaci, J. Mozina, J. Phys. Paris IV 4, C7 (1994)

    Google Scholar 

  13. A. Kanitz, M.R. Kalus, E.L. Gurevich, A. Ostendorf, S. Barcikowski, D. Amans, Plasma Sources Sci. Technol 28, 103001 (2019)

    ADS  Google Scholar 

  14. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)

    Google Scholar 

  15. C.L. Sajti, R. Sattari, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 2421 (2010)

    Google Scholar 

  16. P. Serra, A. Piqué, Adv. Mater. Technol. 4, 1800099 (2019)

    Google Scholar 

  17. A. Piqué, P. Serra, Laser printing of functional materials: 3D microfabrication, electronics and biomedicine (John Wiley & Sons, NJ, 2018)

    Google Scholar 

  18. P. Peyre, R. Fabbro, Opt. Quantum Electron. 27, 1213 (1995)

    Google Scholar 

  19. C.S. Montross, T. Wei, L. Ye, G. Clark, Y.-W. Mai, Int. J. Fatigue 24, 1021 (2002)

    Google Scholar 

  20. M. Tsuyama, N. Ehara, K. Yamashita, M. Heya, H. Nakano, Appl. Phys. A 124, 250 (2018)

    ADS  Google Scholar 

  21. P. Gregorčič, N. Lukač, J. Možina, M. Jezeršek, J. Biomed. Opt. 21, 015008 (2016)

    ADS  Google Scholar 

  22. G. Hawlina, B. Drnovšek-Olup, J. Možina, P. Gregorčič, Appl. Phys. A 122, 118 (2016)

    ADS  Google Scholar 

  23. T. Požar, M. Halilovič, D. Horvat, R. Petkovšek, Appl. Phys. A 124, 112 (2018)

    ADS  Google Scholar 

  24. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, J. Propuls. Power 26, 609 (2010)

    Google Scholar 

  25. H. Yu, H. Li, Y. Wang, L. Cui, S. Liu, J. Yang, Opt. Laser Technol. 100, 57 (2018)

    ADS  Google Scholar 

  26. T. Yabe, H. Ohzono, T. Ohkubo, C. Baasandash, M. Yamaguchi, T. Oku, K. Taniguchi, S. Miyazaki, R. Akoh, Y. Ogata, B. Rosenberg, M. Yoshida, AIP Conf. Proc. 702, 503 (2004)

    ADS  Google Scholar 

  27. T. Yabe, AIP Conf. Proc. 766, 567 (2005)

    ADS  Google Scholar 

  28. T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, Appl. Phys. Lett. 80, 4318 (2002)

    ADS  Google Scholar 

  29. T. Yabe, Y. Ogata, M. Yamaguchi, R. Nakagawa, K. Aoki, Int. Congr. Appl Lasers Electro-Opt. 2002, 161511 (2002)

    Google Scholar 

  30. P.K. Kennedy, IEEE J. Quantum Elect. 31, 2241 (1995)

    ADS  Google Scholar 

  31. J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vogel, J. Appl. Phys. 83, 7488 (1998)

    ADS  Google Scholar 

  32. P. Gregorčič, J. Možina, G. Močnik, Appl. Phys. A 93, 901 (2008)

    ADS  Google Scholar 

  33. P. Gregorčič, R. Petkovšek, J. Možina, J. Appl. Phys. 102, 094904 (2007)

    ADS  Google Scholar 

  34. T. Požar, P. Gregorčič, J. Možina, Opt. Express 17, 22906 (2009)

    ADS  Google Scholar 

  35. G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)

    ADS  Google Scholar 

  36. F. Docchio, P. Regondi, M.R.C. Capon, J. Mellerio, Appl. Opt. 27, 3661 (1988)

    ADS  Google Scholar 

  37. A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

    ADS  Google Scholar 

  38. T.T. Nguyen, R. Tanabe-Yamagishi, Y. Ito, Opt. Laser Eng. 126, 105937 (2020).

    Google Scholar 

  39. A. Menéndez-Manjón, P. Wagener, S. Barcikowski, J. Phys. Chem. C 115, 5108 (2011)

    Google Scholar 

  40. C. Favre, V. Boutou, S.C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R.K. Chang, L. Woeste, J.-P. Wolf, Phys. Rev. Lett. 89, 035002 (2002)

    ADS  Google Scholar 

  41. J.G. Fujimoto, W.Z. Lin, E.P. Ippen, C.A. Puliafito, R.F. Steinert, Investig. Ophthalmol. Vis. Sci. 26, 1771 (1985)

    Google Scholar 

  42. R. Petkovšek, P. Gregorčič, J. Appl. Phys. 102, 044909 (2007)

    ADS  Google Scholar 

  43. P. Gregorčič, M. Jezeršek, J. Možina, J. Biomed. Opt. 17, 075006 (2012)

    ADS  Google Scholar 

  44. R. Petkovšek, P. Gregorčič, J. Možina, Meas. Sci. Technol. 18, 2972 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core Funding No. P2-0392 and Project No. J2-1741). The authors are also thankful to Dr. Matej Hočevar from the Institute of metals and technology, Slovenia for his help with the 3D optical microscope characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gregorčič.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senegačnik, M., Jezeršek, M. & Gregorčič, P. Propulsion effects after laser ablation in water, confined by different geometries. Appl. Phys. A 126, 136 (2020). https://doi.org/10.1007/s00339-020-3309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3309-y

Keywords

Navigation