Skip to main content
Log in

Removal of Enrofloxacin from Water through Magnetic Nanocomposites Prepared from Pineapple Waste Biomass

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract—

In this study, a novel approach was adopted to determine the drug resistance developed due to the presence of antibiotics in industrial effluents. As a remedy, magnetic carbon nano-composites (MCNs) were prepared from waste biomass and characterized by a surface area analyzer, by SEM, EDX, XRD, FTIR, and TG/DTA. Langmuir, Freundlich and Temkin isotherms were used for the determination of adsorption parameters. The Langmuir adsorption isotherm was found to fit better the data of the equilibrium adsorption of enrofloxacin (ENR) on MCN (R2 = 0.99). The effect of pH on the adsorption process was evaluated and a decline in percentage of adsorption was noted at both highly acidic and alkaline pH. The maximum percentage of adsorption was observed at pH 6–8. The effect of ionic strength and humic acid was also tested for the removal of ENR by MCNs. Various kinetic models were used to analyze the kinetics data. The best fit was obtained with a pseudo 2nd order kinetic equation. The thermodynamic parameters were also determined: ΔS° was positive (80 J mol–1K –1) while ΔH° (23.57 kJ mol–1) and ΔG° were negative with numerical values of –0.27, –1.47, and –3.07 kJ mol–1 corresponding to temperatures 25, 40, and 60°C, respectively. MCNs were regenerated with 3% NaOH solution, methanol, and distilled water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Golet, E.M., Alder, A.C., and Giger, W., Environ. Sci. Technol., 2002, vol. 36, pp. 3645–3651.

    Article  Google Scholar 

  2. Michael, I., Rizzo, L., McArdell, C., Manaia, C., et al., Water Res., 2013, vol. 47, pp. 957–995.

    Article  Google Scholar 

  3. Nieto, M., Alovero, F., Manzo, R., and Mazzieri, M.R., Eur. J. Med. Chem., 2005, vol. 40, pp. 361–369.

    Article  Google Scholar 

  4. Sayah, R.S., Kaneene, J.B., Johnson, Y., and Miller, R., Appl. Environ. Microbiol., 2005, vol. 71, pp. 1394–1404.

    Article  Google Scholar 

  5. Fent, K., Weston, A.A., and Caminada, D., Aquat. Toxicol., 2006, vol. 76, pp. 122–159.

    Article  Google Scholar 

  6. Martinez, M., McDermott, P., and Walker, R., Vet. J., 2006, vol. 172, pp. 10–28.

    Article  Google Scholar 

  7. Seifrtova, M., Pena, A., Lino, C., and Solich, P., Anal. Bioanal. Chem., 2008, vol. 391, pp. 799–805.

    Article  Google Scholar 

  8. Focazio, M.J., Kolpin, D.W., Barnes, K.K., Furlong, E.T., et al., Sci. Total Environ., 2008, vol. 402, pp. 201–216.

    Article  Google Scholar 

  9. Wang, Q.J., Mo, C.H., Li, Y.W., Gao, P., et al., Environ. Pollut., 2010, vol. 158, pp. 2350–2358.

    Article  Google Scholar 

  10. Yan, W., Hu, S., and Jing, C., J. Colloid Interface Sci., 2012, vol. 372, pp. 141–147.

    Article  Google Scholar 

  11. Zhou, C., Assem, M., Tay, J.C., Watkins, P.B., et al., J. Clin. Invest., 2006, vol. 116, pp. 1703–1712.

    Article  Google Scholar 

  12. Guinea, E., Brillas, E., Centellas, F., Cañizares, P., et al., Water Res., 2009, vol. 43, pp. 2131–2138.

    Article  Google Scholar 

  13. Rivagli, E., Pastorello, A., Sturini, M., Maraschi, F., et al., J. Environ. Chem. Eng., 2014, vol. 2, pp. 738–744.

    Article  Google Scholar 

  14. Tong, D.S., Zhou, C.H.C., Lu, Y., Yu, H., et al., Appl. Clay Sci., 2010, vol. 50, pp. 427–431.

    Article  Google Scholar 

  15. Li, H., Zhang, D., Han, X., and Xing, B., Chemosphere, 2014, vol. 95, pp. 150–155.

    Article  Google Scholar 

  16. Zahoor, M. and Mahramanlioglu, M., Chem. Biochem. Eng. Q., 2011, vol. 25, pp. 55–63.

    Google Scholar 

  17. Zahoor, M., Desalin. Water Treat., 2014, vol. 52, pp. 3104–3114.

    Article  Google Scholar 

  18. Muhammad, M.U.R.K., Zahoor, M., Bakhtiar, M., Farhat, A.K., et al., J. Nanomater., 2017, vol. 2017, pp. 1–10.

    Google Scholar 

  19. Zahoor, M. and Farhat, A.K., Desalin. Water Treat., 2016, vol. 57, pp. 11893–11903.

    Article  Google Scholar 

  20. Zhu, Y., Zhang, L., Schappacher, F.M., Pöttgen, R., et al., J. Phys. Chem. C, 2008, vol. 112, pp. 8623–8628.

    Article  Google Scholar 

  21. Wu, S., Huang, J., Zhuo, C., Zhang, F., et al., J. Inorg. Organomet. Polym. Mater., 2016, vol. 26, pp. 632–639.

    Article  Google Scholar 

  22. Zhu, M. and Diao, G., Nanoscale, 2011, vol. 3, pp. 2748–2767.

    Article  Google Scholar 

  23. Anirudhan, T. and Shainy, F., J. Colloid Interface Sci., 2015, vol. 456, pp. 22–31.

    Article  Google Scholar 

  24. Mao, H., Wang, S., Lin, J.Y., Wang, Z., et al., J. Environ. Sci., 2016, vol. 49, pp. 179–188.

    Article  Google Scholar 

  25. Badi, M.Y., Azari, A., Pasalari, H., Esrafili, A., et al., J. Mol. Liq., 2018, vol. 261, pp. 146–154.

    Article  Google Scholar 

  26. Zhang, Z. and Kong, J., J. Hazard. Mater., 2011, vol. 15, pp. 325–329.

    Article  Google Scholar 

  27. Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., et al., Molecules, 2013, vol. 18, pp. 7533–7548.

    Article  Google Scholar 

  28. Li, X., Wang, W., Dou, J., Gao, J., et al., J. Water Process. Eng., 2016, vol. 9, pp. e14–e20.

    Article  Google Scholar 

  29. Li, Z., Hong, H., Liao, L., Ackley, C.J., et al., Colloids Surf. B, 2011, vol. 88, pp. 339–344.

    Article  Google Scholar 

  30. Langmuir, I., J. Am. Chem. Soc., 1918, vol. 40, pp. 1361–1403.

    Article  Google Scholar 

  31. Freundlich, H., J. Phys. Chem., 1906, vol. 57, pp. 384–470.

    Google Scholar 

  32. Park, J.C., Joo, J.B., and Yi, J., Korean J. Chem. Eng., 2005, vol. 22, pp. 276–280.

    Article  Google Scholar 

  33. Lin, P., Zhang, Y., Zhang, X., Chen, C., et al., Front. Environ. Sci. Eng., 2015, vol. 9, pp. 138–146.

    Article  Google Scholar 

  34. Fu, H., Li, X., Wang, J., Lin, P., et al., J. Environ. Sci., 2017, vol. 56, pp. 145–152.

    Article  Google Scholar 

  35. Gao, Y., Li, Y., Zhang, L., Huang, H., et al., J. Colloid Interface Sci., 2012, vol. 368, pp. 540–546.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zahoor.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahoor, M., Ullah, A. & Alam, S. Removal of Enrofloxacin from Water through Magnetic Nanocomposites Prepared from Pineapple Waste Biomass. Surf. Engin. Appl.Electrochem. 55, 536–547 (2019). https://doi.org/10.3103/S1068375519050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519050156

Keywords:

Navigation