Skip to main content
Log in

Study of the behavior of three Tunisian clays suitable for the manufacture of ceramics

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The behavior of three clays collected from different locations in Tunisia has been studied through their chemical and mineralogical composition, plasticity, specific surface area, cation exchange capacity, via dilatometry and infrared spectroscopy. The mineralogical composition is an indication of the presence of kaolinite, illite and smectite associated with quartz, calcite and hematite. The study of the chemical composition showed that the main oxides in the ClayTeb sample are SiO2 and Al2O3, which were also found in the ClayHorb and ClayMed samples along with Fe2O3, CaO and K2O. The mineralogical metamorphoses during the firing process were recorded via the X-ray diffraction of the raw clays and subsequent firing at 300, 600, 800, 1000 and 1200°C for 3 hours. Kaolinite transformed to metakaolinite was not observed at 600°C. Illite underwent total deshydroxylation at 1000°C. This latter temperature characterizes the main evolution of all samples and the start of the crystallization of mullite, which is dependent on the presence of impurities (Fe2O3) and K2O (lent fondant). For the ClayMed clays, which have the maximum content of illite, only the spinel phase was defined at 1200°C. The samples were dry pressed and fired at temperatures of 950, 1050, and 1100°C and the characteristics of the ceramic were determined by firing shrinkage, water absorption, loss on ignition and flexural strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afnor Norme Français N.F. EN, 159: Carreaux et dalles céramiques. presses à sec à absorption d’eau E > 10%, Groupe BIII, La Plaine Saint-Denis: Afnor, 1991, p. 8.

  2. Afnor Norme Français EN 99: Carreaux et dalles Céramiques. Détermination de l’absorption d’eau, La Plaine Saint-Denis: Society of Japan, 1982, vol. 119, pp. 93–100.

  3. Aras, A., Appl. Clay Sci., 2004, vol. 24, pp. 257–269.

    Article  Google Scholar 

  4. Azzouz, H., Alouani, R., and Tlig, S., Mineralogical Characterization of Ceramic Tiles Prepared by a Mixture of Cretaceous and Mio–Pliocene Clays from Tunisia: Factory and Laboratory Product Ceramic, Tokyo: Ceram. Soc. Jpn., 2011, vol. 119, pp. 93–100.

    Google Scholar 

  5. Baccour, H., Medhioub, M., Jamoussi, F., and Mhiri, T., J. Mater. Process. Technol., 2009, vol. 209, pp. 2812–2817.

    Article  Google Scholar 

  6. Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T., and Daoud, A., Mater Charact., 2008, vol. 59, pp. 1613–1622.

    Article  Google Scholar 

  7. Baccour, H., Medhioub, F., and Mhiri, T., Verres, Céram. Compos., 2011, vol. 1, no. 2, pp. 25–33.

    Google Scholar 

  8. Bennour, A., Mahmoudi, S., Srasra, E., Boussen, S., et al., Appl. Clay Sci., 2015, vol. 115, pp. 30–38.

    Article  Google Scholar 

  9. Bergaya, F., Theng, B.K.G., and Lagaly, G., Handbook of Clay Science. Developments in Clay Science, Amsterdam: Elsevier, 2006, vol. 1.

    Google Scholar 

  10. Brown, G. and Brindley, G.W., Crystal Structures of Clays Minerals and Their X-ray Identification, London: Miner. Soc., 1984.

    Google Scholar 

  11. Chelly, M. and Srasra, E., Surf. Eng. Appl. Electrochem., 2009, vol. 1, pp. 47–55.

    Article  Google Scholar 

  12. Chen, Y.F., Wang, M.C., and Hon, M.H., J. Eur. Ceram. Soc., 2004, vol. 24, pp. 2389–2397.

    Article  Google Scholar 

  13. de Oliveira Modesto, C., and Bernardin, A.M., Appl. Clay Sci., 2008, vol. 40, pp. 15–19.

    Article  Google Scholar 

  14. Dondi, M., Marsigli, M., and Ventura, I., Ceramurgia, 1998, vol. 28, pp. 1–8.

    Google Scholar 

  15. Dondi, M., Appl. Clay Sci., 1999, vol. 15, pp. 337–366.

    Article  Google Scholar 

  16. Elfil, H., Srasra, E., and Dogguy, M., Therm. Anal., 1995, vol. 44, pp. 663–683.

    Article  Google Scholar 

  17. Escalera, E., Tegman, R., Marta-Lena Antti, M.L., and Odén, M., Appl. Clay Sci., 2014, vol. 101, pp. 100–105.

    Article  Google Scholar 

  18. Fabbri, B. and Fiori, C., Miner. Petrogr. Acta, 1985, vol. 29, pp. 535–545.

    Google Scholar 

  19. Infrared Spectra of Minerals, Farmer, V.C., Ed., London: Miner. Soc., 1974.

  20. Fripiat, J.J., Chaussidon et Azelli. chimie physique des phénomènes de surface, Renens: masson et cie, 1971.

    Google Scholar 

  21. Galos, K., Appl. Clay Sci., 2011, vol. 51, pp. 74–85.

    Article  Google Scholar 

  22. Galos, K., Ceram Int., 2011, vol. 37, pp. 851–861.

    Article  Google Scholar 

  23. Grim, R.E., Clay Mineralogy, New York: McGraw, 1962, 2nd ed.

    Google Scholar 

  24. Hajjaji, W., Hachani, M., Moussi, B., Jeridi, K., et al., J. Afr. Earth Sci., 2010, vol. 57, pp. 41–46.

    Article  Google Scholar 

  25. Holtz, R.D. and Kovacs, W.D., An Introduction to Geotechnical Engineering, New Jersey: Prentice Hall, 1981.

    Google Scholar 

  26. ISO 10545-4: Ceramic Tiles. Part 4: Determination of Modulus of Rupture and Breaking Strength, Edition 2, Geneva: Int. Stand. Org., 2004.

  27. ISO 13006: Ceramic Tiles. Definitions, Classification, Characteristics and Marking, Edition 1, Geneva: Int. Stand. Org., 1998.

  28. Jordan, M.M., Sanfeliu, T., and De la Fuente, C., Appl. Clay Sci., 2001, vol. 20, pp. 87–95.

    Article  Google Scholar 

  29. Kakali, G., Perraki, T., Tsivilis, S., and Badogiannis, E., Appl. Clay Sci., 2001, vol. 20, pp. 73–80.

    Article  Google Scholar 

  30. Kam, S., Bathiebo, L., Soro, S., Wenmenga, U., et al., Appl. Clay Sci., 2009, vol. 46, pp. 351–357.

    Article  Google Scholar 

  31. Konta, J., Appl. Clay Sci., 1995, vol. 10, pp. 275–335.

    Article  Google Scholar 

  32. Kreimeyer, R., Appl. Clay Sci., 1987, vol. 2, pp. 175–183.

    Article  Google Scholar 

  33. Limites d’Atterberg, limite de liquidité, limite de plasticité, Paris: Lab. Central Ponts Chaussées, 1987, pp. 19–22.

  34. Madejova, J., Vib. Spectrosc., 2003, vol. 31, pp. 1–10.

    Article  Google Scholar 

  35. Manoharan, C., Sutharsan, P., Dhanapandian, S., Venka-Tachalapathy, R., et al., Appl. Clay Sci., 2011, vol. 54, pp. 20–25.

    Article  Google Scholar 

  36. Mahmoudi, S., Srasra, E., and Zargouni, F., J. Afr. Earth Sci., 2010, vol. 58, pp. 235–241.

    Article  Google Scholar 

  37. Messeguer, S., Pardo, F., Jordan, M.M., Sanfeliu, T., et al., Appl. Clay Sci., 2010, vol. 47, pp. 372–377.

    Article  Google Scholar 

  38. Moore, D.M. and Reynolds, R.C., Jr., X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford: Oxford Univ. Press, 1997, 2nd ed.

    Google Scholar 

  39. Monteiro, S.N. and Vieira, C.M.F., Appl. Clay Sci., 2004, vol. 27, pp. 229–234.

    Article  Google Scholar 

  40. Moussi, B., Medhioub, M., Hatira, N., Yans, N., Hajjaji, W., Rocha, F., Labrincha, J.A., and Jamoussi, F., Clay Miner., 2011, vol. 46, pp. 165–175.

    Article  Google Scholar 

  41. Murray, H.H., Applied Clay Mineralogy. Developments in Clay Science, Amsterdam: Elsevier, 2007.

    Google Scholar 

  42. Murray, H.H. and Keller, W.D., in Kaolin Genesis and Utilization, Murray, H.H., Bundy, W., and Harvey, C., Eds., Chantilly, VA: Clay Miner. Soc., 1993, vol. 1, pp. 1–24.

    Google Scholar 

  43. Nahdi, K., Gasmi, N., Trabelsi, A. M., and Kbir-Ariguib, N., J. Soc. Chim. Tunisie, 2001, vol. 11, no. 4, pp. 25–34.

    Google Scholar 

  44. Ngun, B.K., Hasmaliza, M., Shamsul, K.S., Kiyoshi, O., and Zainal, A.A., Appl. Clay Sci., 2013, vol. 53, pp. 33–41.

    Article  Google Scholar 

  45. Peters, T. and Iberg, R., Am. Ceram. Soc. Bull., 1978, vol. 57, pp. 503–509.

    Google Scholar 

  46. Ratzemberger, H., Z. Ind. Int., 1990, vol. 43, 348–354.

    Google Scholar 

  47. Riccardi, M.P., Messiga, B., and Duminuco, P., Appl. Clay Sci., 1999, vol. 15, pp. 393–409.

    Article  Google Scholar 

  48. Schollenberger, C.J. and Simon, R.H., Soil Sci., 1945, vol. 59, pp. 13–24.

    Article  Google Scholar 

  49. Slaughter, M. and Keller, W D., Am. Ceram. Soc., 1959, vol. 38, no. 12, pp. 702–703.

    Google Scholar 

  50. Traor, K., Kabré, T.S., and Blanchart, P., Appl. Clay Sci., 2000, vol. 17, pp. 279–292.

    Article  Google Scholar 

  51. Trindate, M.I., Dias, M.I., Rocha, F., Prudencio, M.I., et al., Appl. Clay Sci., 2011, vol. 53, pp. 489–499.

    Article  Google Scholar 

  52. Trindate, M.J., Dias, M.I., Coroado, J., and Rocha, F., Appl. Clay Sci., 2009, vol. 42, pp. 345–355.

    Article  Google Scholar 

  53. Worrall, W.E., Clays and Ceramic Raw Materials, Amsterdam: Elsevier, 1986, 2nd ed.

    Google Scholar 

  54. Yan Olphen, H. and Fripiat, J.J., Data Handbook for Clay Minerals and Other Non-Metallic Minerals, Oxford: Pergamon, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bennour.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennour, A., Srasra, E., Hatira, N. et al. Study of the behavior of three Tunisian clays suitable for the manufacture of ceramics. Surf. Engin. Appl.Electrochem. 53, 202–211 (2017). https://doi.org/10.3103/S106837551702003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837551702003X

Keywords

Navigation