Skip to main content
Log in

Preparation, qualities and defects of ceramic materials from Tunisian clay minerals

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mineralogy, chemistry, and plasticity of the raw clay materials from different Tunisian regions were studied. These clays, exploitable at eight quarries, are the only mineral resources for the ceramic industry in Tunisia. Powder X-ray diffraction revealed that illite and kaolinite are the major mineral phases. However, other clay minerals, such as illite/smectite mixed-layer, and chlorite are also present. The associated minerals detected in powdered materials are: quartz, calcite, feldspar and, dolomite. These raw materials are marly clays with 6–14% CaO, represented mostly by calcite; they show the greatest relative amount of Na2O+ K2O (~3.5%) and iron–oxide (~6%). The plasticity index and the liquid limit of the crude samples do not exceed 22 and 42%, respectively. This indicates that these clays belong to illitic clays, classified in the low to moderate plastic domains. The mineralogical, chemical, physical and technical results of the studied clays encourage the use of these materials for traditional ceramic. In addition, this paper shows that the ceramic defects observed in the pieces manufactured from these Tunisian clays are lamination, cracks, and lower mechanical and bending strength. Some solutions are offered to avoid these ceramic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouaziz, S., Jedoui, Y., Barrier, E., and Angelier, J., C. R. Geosci., 2003, vol. 335, pp. 247–254.

    Article  Google Scholar 

  2. Ben Ferjani, A., Burollet, P.F., and Mejri, F., Memoires Entreprise Tunisienne des Activites petrolieres (A Renewed Synthesis), Tunisia, 2006, vol.22.

  3. Baccour, H., Medhioub, M., Jamoussi, F., and Mhiri, T., Mater. Charact., 2008, vol. 59, pp. 1613–1622.

    Article  Google Scholar 

  4. Baccour, H., Medhioub, M., Jamoussi, F., and Mhiri, T., J. Mater. Process. Techol., 2009, vol. 209, pp. 2812–2817.

    Article  Google Scholar 

  5. Mahmoudi, S., Srasra, E., and Zargouni, F., Appl. Clay Sci., 2008, vol. 42, pp. 125–129.

    Article  Google Scholar 

  6. Mahmoudi, S., Srasra, E., and Zargouni, F., J. Afr. Earth Sci., 2010, vol. 58, pp. 235–241.

    Article  Google Scholar 

  7. Moussa, L., Srasra, E., and Bouzouita, K., Mineral. Petrogr. Acta, 1992, vol. 35, pp. 147–159.

    Google Scholar 

  8. Ben M’Barek, M., Srasra, E., and Zargouni, F., Afr. Geosci. Rev., 2002, vol. 9, pp. 107–117.

    Google Scholar 

  9. L.C.P.C. Atterberg Limits, Liquid Limit, Plasticity Limit, Paris: Lab. Central Ponts Chausses, 1987, vol. 26, pp. 10–15.

    Google Scholar 

  10. Jeridi, K., Hachani, M., Hajjaji, W., Moussi, B., et al., Clay Miner., 2008, vol. 43, pp. 339–350.

    Article  Google Scholar 

  11. Hollerl, N., Ceram. World Rev., 1993, vol. 8, pp. 82–88.

    Google Scholar 

  12. Proust, C., Jullien, A., and Forestier, L., C. R. Geosci., 2004, vol. 336, pp. 1233–1238.

    Article  Google Scholar 

  13. Ancey, C. J. Non-Newton Fluid, 2007, vol. 142, nos. 1–3, pp. 4–35.

    Article  Google Scholar 

  14. Yu, H.S., Khong, C., and Wang, J., Mech. Res. Commun., 2007, vol. 34, pp. 97–114.

    Article  Google Scholar 

  15. Modesto, C. and Bernardin, A.M., Appl. Clay Sci., 2008, vol. 40, pp. 15–19.

    Article  Google Scholar 

  16. Grim, R.E., Bray, R.H., and Bradley, W.F., Am. Mineral., 1937, vol. 22, pp. 813–829.

    Google Scholar 

  17. Gallala, W., Gaied, M.E., and Montacer, M., J. Afr. Earth Sci., 2009, vol. 53, pp. 159–170.

    Article  Google Scholar 

  18. Carretero, M.I., Dondi, M., Fabbri, B., and Raimondo, M., Appl. Clay Sci., 2002, vol. 20, pp. 301–306.

    Article  Google Scholar 

  19. Ferrari, S., and Gualteri, A.F., Appl. Clay Sci., 2006, vol. 32, pp. 73–81.

    Article  Google Scholar 

  20. Sedmale, G., Sperberga, I., Sedmalis, U., and Valancius, Z., J. Eur. Ceram. Soc., 2006, vol. 26, pp. 3351–3355.

    Article  Google Scholar 

  21. Wattanasiriwech, D., Srijan, K., and Wattanasiriwech, S., Appl. Clay Sci., 2009, vol. 43, pp. 57–62.

    Article  Google Scholar 

  22. Bain, A.J., Cap. Fin. Int., 1987, vol. 63, pp. 44–84.

    Google Scholar 

  23. Klaarenbeek, F.W., Trans. Br. Ceram. Soc., 1961, vol. 60, pp. 739–771.

    Google Scholar 

  24. Kreimeyer, R., Appl. Clay Sci., 1987, vol. 2, pp. 175–183.

    Article  Google Scholar 

  25. Dondi, M., Appl. Clay Sci., 1999, vol. 15, pp. 337–366.

    Article  Google Scholar 

  26. Jordán, M.M., Sanfeliu, T., and De la Fuente, C., Appl. Clay Sci., 2001, vol. 20, pp. 87–95.

    Article  Google Scholar 

  27. Sousa, S.J.G. and Holanda, J.N.F., Ceram. Int., 2005, vol. 31, pp. 215–222.

    Article  Google Scholar 

  28. Alcântara, A.C.S., Beltrão, M.S.S., Oliveira, H.A., and Gimenez, I.F., Appl. Clay Sci., 2008, vol. 39, pp. 160–165.

    Article  Google Scholar 

  29. Holtz, R.D. and Kovacs, W.D., Kansas Geotech. Surv., 1981, vol.3.

  30. van der Merwe, D.H., Trans. S. Afr. Inst. Civ. Eng., 1964, vol. 6, pp. 103–107.

    Google Scholar 

  31. Jordán, M.M., Almendro, M.B., Romero, M., and Rincón, J.M., Appl. Clay Sci., 2006, vol. 30, pp. 219–224.

    Article  Google Scholar 

  32. Darweesh, H., Ceram. Int., 2001, vol. 27, pp. 45–50.

    Article  Google Scholar 

  33. Sánchez-Soto, P.J., Diaz-Hernandez, J.L., Raigon-Pichardo, M., and Ruíz-Conde, A., Br. Ceram. Trans., 1994, vol. 93, pp. 196–201.

    Google Scholar 

  34. Parras, J., Sanchez-Jimenez, C., Rodas, M., and Luque, F.G., Appl. Clay Sci., 1996, vol. 11, pp. 25–41.

    Article  Google Scholar 

  35. Negre, F., Sanchez, E., Garcia, J., and Sanz, V., Am. Ceram. Soc. Bull., 1998, vol. 77, pp. 63–68.

    Google Scholar 

  36. Romagnoli, M., Burani, M., Tari, G., and Ferreira, J.M.F., J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1631–1636.

    Article  Google Scholar 

  37. González-Garcia, F., Romero-Acosta, V., Garcia-Ramos, G., and Gonzalez-Rodriguez, M., Appl. Clay Sci., 1990, vol. 5, pp. 361–375.

    Article  Google Scholar 

  38. Bommannavar, A.S. and Montano, P.A., Fuel, 1982, vol. 61, pp. 523–528.

    Article  Google Scholar 

  39. Montano, P.A. and Vaishnava, P.P., Proc. Indian Natl. Sci. Acad., 1982, vol. 9, pp. 281–283.

    Google Scholar 

  40. Assal, H.H., El-Didamony, H., Ramez, M., and Mossalamy, F.H., Ind. Ceram., 1999, vol. 19, pp. 82–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahmoudi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, S., Srasra, E. & Zargouni, F. Preparation, qualities and defects of ceramic materials from Tunisian clay minerals. Surf. Engin. Appl.Electrochem. 53, 295–301 (2017). https://doi.org/10.3103/S1068375517030103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517030103

Keywords

Navigation