Skip to main content
Log in

Electrocatalytic oxidation and sensitive determination of N-acetyl-L-cysteine at cyclodextrin-carbon nanotubes modified glassy carbon electrode

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior and electroanalysis of N-acetyl-L-cysteine (NAC) were studied at a glassy carbon electrode modified with β-cyclodextrin (β-CD) and carbon nanotubes (β-CD/MWCNT/GCE). The β-CD/MWCNT/GCE displayed excellent electrocatalytic performance to the catalytic oxidation reactions of NAC. Because NAC is selectively enriched by β-CD, the β-CD/MWCNT/GCE can solve the problems of the signal attenuation caused by the adsorption of the NAC oxidation product. The influence of the experimental conditions on the NAC electrochemical behavior was also considered, when using a modified electrode. The mechanism and kinetics of the catalytic oxidation reactions of NAC were monitored by the cyclic voltammetry and chronoamperometry. The catalytic oxidation rate constant k (4.21 ± 0.05) × 103 M−1 s−1 was calculated using electrochemical approaches. The results showed that in 1.0 × 10−3 M of potassium ferricyanide solution, the current signals were proportional to the NAC concentration from 4.4 × 10−4 M to 8.0 × 10−2 M [I p (10−6 A) = 0.58412 + 5.38 × 103 c(M), R 2 = 0.9934], and the detection limit (S/N = 3) was 5.02 × 10−5 M. For 80 mM NAC, six successive measurements yielded R.S.D. of 3.4%, which shows that the sensor is reproducible. The proposed method can be applied for the determination of NAC in routine analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vries, D.N. and Flora, D.S., N-acetyl-L-cysteine, J. Cell. Biochem. Suppl., 1993, vol. 53, no. 17F, pp. 270–277.

    Article  Google Scholar 

  2. Tsikas, D., Sandmann, J., Ikic, M., Fauler, J., Stichtenoth, D.O., and Frolich, J.C., Analysis of cysteine and N-acety-L-cysteine in human plasma by high-performance liquid chromatography at the basal state and after oral administration of N-acetyl-cysteine, J. Chromatogr., Ser. B, 1998, vol. 708, nos. 1–2, pp. 55–60.

    Article  Google Scholar 

  3. Pharmacopoeia Commission of the Ministry of Health of the People’s Republic of China, in Pharmacopoeia of the People’s Republic of China, 2nd Ed., Beijing: Chemical Industry Press, 2005, p. 4.

  4. Toyooka, T., Chokshi, H.P., Givens, R.S., Carlson, R.G., Lunte, S.M., and Kuwana, T., Fluorescence and chemiluminescence detection of oxazole-labelled amines and thiols, Biomed. Chromatogr., 1993, vol. 7, no. 4, pp. 208–216.

    Article  Google Scholar 

  5. Pournaghi-Azar, M.H. and Ahour, F., Palladized aluminum electrode covered by Prussian Blue Film as an effective transducer for electrocatalytic oxidation and hydrodynamic amperometry of N-acetyl-cysteine and glutathione, J. Electroanal. Chem., 2008, vol. 622, no. 1, pp. 22–28.

    Article  Google Scholar 

  6. Barus, C., Gros, P., Comtat, M., Daunes-Marion, S., and Tarroux, R., Electrochemical behavior of N-acetyl-Lcysteine on gold electrode: A tentative reaction mechanism, Electrochim. Acta, 2007, vol. 52, no. 28, pp. 7978–7985.

    Article  Google Scholar 

  7. Suarez, W.T., Marcolino, L.H., and Fatibello-Filho, O., Voltammetric determination of N-acetylcysteine using a carbon paste electrode modified with copper(II) hexacyanoferrate(III), Microchem. J., 2006, vol. 82, no. 2, pp. 163–167.

    Article  Google Scholar 

  8. Heli, H., Majdi, S., and Sattarahmady, N., Chemical: Ultrasensitive sensing of N-acetyl-L-cysteine using an electrocatalytic transducer of nanoparticles of iron(III) oxide core-cobalt hexacyanoferrate shell, Sens. Actuators, Ser. B, 2010, vol. 145, no. 1, pp. 185–193.

    Article  Google Scholar 

  9. Gao, Z.N., Zhang, J., and Liu, W.Y., Electrocatalytic oxidation of N-acetyl-L-cysteine by acetylferrocene at glassycarbon electrode, J. Electroanal. Chem., 2005, vol. 580, no. 1, pp. 9–16.

    Article  Google Scholar 

  10. Ojani, R., Raoof, J.B., and Zarei, E., Electrocatalytic reduction of nitrite using ferricyanide; Application its simple selective determination, Electrochim. Acta, 2006, vol. 52, no. 3, pp. 753–759.

    Article  Google Scholar 

  11. Raoof, J.B., Ojani, R., and Rashid-Nadimi, S., Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid, Electrochim. Acta, 2004, vol. 49, no. 2, pp. 271–280.

    Article  Google Scholar 

  12. Raoof, J.B., Ojani, R., and Rashid-Nadimi, S., Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films, Electrochim. Acta, 2005, vol. 50, no. 24, pp. 4694–4698.

    Article  Google Scholar 

  13. Dong, W., Dong, C., Shuang, S., and Choi, M.F., Near-infrared luminescence quenching method for the detection of phenolic compounds using N-acetyl-l-cysteine-protected gold nanoparticles-tyrosinase hybrid material, Biosens. Bioelectron., 2010, vol. 25, no. 5, pp. 1043–1048.

    Article  Google Scholar 

  14. El-Hady, D.A., Selective and sensitive hydroxypropyl-beta-cyclodextrin based sensor for simple monitoring of (+)-catechin in some commercia1 drinks and biological fluids, Anal. Chim. Acta, 2007, vol. 593, no. 2, pp. 178–87.

    Article  Google Scholar 

  15. Lee, C.J. and Yang, J., α-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids, Anal. Biochem., 2006, vol. 359, no. 1, pp. 124–131.

    Article  Google Scholar 

  16. Kang, S., Cui, Z., and Mu, J., Electrochemical behavior of sodium cholate and deoxycholate on an electrode modified with multi-walled carbon nanotubes (MWNTs) linked up with cyclodextrin, Diamond Relat. Mater., 2007, vol. 16, no. 1, pp. 12–15.

    Article  Google Scholar 

  17. Wang, G., Liu, X., Yu, B., and Luo, G., Electrocatalytic response of norepinephrine at a b-cyclodextrin incorporated carbon nanotube modified electrode, J. Electroanal. Chem., 2004, vol. 567, no. 2, pp. 227–231.

    Article  Google Scholar 

  18. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, nos. 1–2, pp. 149–153.

    Article  Google Scholar 

  19. He, J., Yang, Y., Yang, X., Liu, Y., Liu, Z., Shen, G., and Yu, R., β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin, Sens. Actuators, Ser. B, 2006, vol. 114, no. 1, pp. 94–100.

    Article  Google Scholar 

  20. Zhao, J., Jin, J., Wu, C., Jiang, H., Zhou, Y., Zuo, J., and Wang, X., Highly sensitive identification of cancer cells by combining the new tetrathiafulvalene derivative with a b-cyclodextrin/multi-walled carbon nanotubes modified GCE, Analyst, 2010, vol. 135, no. 11, pp. 2965–2969.

    Article  Google Scholar 

  21. Karimi-Maleh, H., Keyvanfard, M., Alizad, K., Fouladgar, M., Beitollahi, H., Mokhtari, A., and Gholami-Orimi, F., Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, pp. 6141–6150.

    Google Scholar 

  22. Salmanipour, A., Taher, M.A., Beitollahi, H., and Hosseinzadeh, R., New voltammetric strategy for simultaneous determination of N-acetylcysteine and folic acid using a carbon nanotube modified glassy carbon electrode, Colloids Surf., Ser. B, 2013, vol. 102, pp. 385–390.

    Article  Google Scholar 

  23. Ensafi, A.A., Karimi-Maleh, H., Mallakpour, S., and Hatami, M., Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode, Sens. Actuators, Ser. B, 2011, vol. 155, no. 2, pp. 464–472.

    Article  Google Scholar 

  24. Keyvanfard, M., Ensafi, A.A., Karimi-Maleh, H., and Alizad, K., Modified multiwalled carbon nanotubes paste electrode as a sensor for the electrocatalytic determination of N-acetylcysteine in the presence of high concentrations of folic acid, Anal. Methods, 2012, vol. 4, no. 10, pp. 3268–3274.

    Article  Google Scholar 

  25. Song, J.P., Guo, Y.J., Shuang, S.M., and Dong, C., Electrochemical behavior of brilliant cresyl violet at Multi-wall carbon nanotubes/nafion modified glassy carbon electrode and its interaction with cyclodextrins, J. Incl. Phenom. Macro., 2009, vol. 64, nos. 1–2, pp. 115–120.

    Article  Google Scholar 

  26. Song, J.P., Guo, Y.J., Shuang, S.M., and Dong, C., Study on the supramolecular systems of two basic violets with cyclodextrins by MWNTs/nafion modified glassy carbon electrode, Chin. Chem. Lett., 2009, vol. 20, no. 8, pp. 981–984.

    Article  Google Scholar 

  27. Davis, J.J., Coles, R.J., and Hill, H.A.O., Protein electrochemistry at carbon nanotube electrodes, J. Electroanal. Chem., 1997, vol. 440, nos. 1–2, pp. 279–282.

    Google Scholar 

  28. Wang, Z.H., Wang, Y.M., and Luo, G.A., A selective voltammetric method for uric acid detection at betacyclodextrin modified electrode incorporating carbon nanotubes, Analyst, 2002, vol. 127, no. 10, pp. 1353–1358.

    Article  Google Scholar 

  29. Chen, J., Dyer, M.J., and Yu, M.F., Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes, J. Am. Chem. Soc., 2001, vol. 123, no. 25, pp. 6201–6202.

    Article  Google Scholar 

  30. Yan, J.L., Sun, R.D., and Sun, W.D., Electrochemical behavior of N-acetyl-L-cysteine at mercury film electrode, Chin. J. Anal. Chem., 2003, vol. 31, no. 4, pp. 448–450.

    Google Scholar 

  31. Gao, Z.N., Zhang, J., and Liu, W.Y., Electrocatalytic oxidation of N-acetyl-L-cysteine by acetylferrocene at glassy carbon electrode, J. Electroanal. Chem., 2005, vol. 580, no. 1, pp. 9–16.

    Article  Google Scholar 

  32. Bai, L. and Gao, Z.N., Electrocatalytic oxidation of N-acetyl-L-cysteine at 10-methylphenothiazine modified carbon paste electrode and its practical analytical application, Chin. J. Appl. Chem., 2008, vol. 25, no. 6, pp. 702–705.

    Google Scholar 

  33. Ren, C.C. and Gao, Z.N., Electrocatalytic oxidation and its electroanalytical method of N-acetyl-L-cysteine at multi-wall carbon nanotubes modified glassy carbon electrode, Chin. J. Pharm. Anal., 2009, vol. 29, no. 7, pp. 1183–1186.

    Google Scholar 

  34. Raoof, J.B., Ojani, R., Amiri-Aref, M., and Chekin, F., Catechol as an electrochemical indicator for voltammetric determination of N-acetyl-L-cysteine in aqueous media at the surface of carbon paste electrode, J. Appl. Electrochem., 2010, vol. 40, vol. 7, pp. 1357–1363.

    Article  Google Scholar 

  35. Carmo, D.R., Silva, R.M., and Stradiotto, N.R., Electro-catalytic and voltammetric determination of sulfhydryl compounds through iron nitroprusside modified graphite paste electrode, J. Braz. Chem. Soc., 2003, vol. 14, no. 4, pp. 616–620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Dong.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chang, Y. & Dong, C. Electrocatalytic oxidation and sensitive determination of N-acetyl-L-cysteine at cyclodextrin-carbon nanotubes modified glassy carbon electrode. Surf. Engin. Appl.Electrochem. 51, 111–117 (2015). https://doi.org/10.3103/S1068375515020155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375515020155

Keywords

Navigation