Skip to main content
Log in

Synergetics of dusty plasma and technological aspects of the application of cryogenic dusty plasma

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The main achievements of the investigations into cryogenic dusty plasma and the review of the state of the studies carried out in this region are presented. The peculiarities of the cryogenic plasma of gas discharges that affect the processes of self-organization of dusty plasma structures are discussed. The investigation of cryogenic dusty plasma is shown to be promising for uses in fundamental or applied physics, including application to nanotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asinovskii, E.I., Kirillin, A.V., and Rakovets, A.A., Kriogennye razryady (Cryogenic Discharges), Moscow: Nauka, 1988.

    Google Scholar 

  2. Loneková, H., Experimental study on influence of cooling on glow discharge parameters. I. Results of probe measurements, Czech J. Phys., 1975, vol. 25, no. 11, pp. 1231–1239.

    Article  Google Scholar 

  3. Fugol’, I.Ya. and Pakhomov, P.L., Diffusion of metastable helium atoms in a cryogenic plasma, J. Exp. Theor. Phys. Lett., 1966, vol. 3, no. 10, pp. 254–256.

    Google Scholar 

  4. Belevtsev, A.A. and Mnatsakanyan, A.Kh., The effect of ionizing collisions of metastables on the distribution function of electrons in cryogen helium discharge, Teplofiz. Vys. Temp., 1975, vol. 13, no. 5, pp. 943–946.

    Google Scholar 

  5. Rakovets, A.A., The effect of elementary processes with metastable particles on characteristics on the glow-discharge plasma, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow, 1985.

    Google Scholar 

  6. Hrachová-Řezačová, V. and Loneková, H., Experimental study on influence of cooling on glow discharge parameters. II. Study of the electron distribution function, Czech J. Phys., 1975, vol. 25, no. 12, pp. 1355–1361.

    Article  Google Scholar 

  7. Langmuir, I., Found, C. G., and Dittmer, A. F., A new type of electric discharge: The streamer discharge, Science, 1924, LX(1557), pp. 392–394.

    Article  Google Scholar 

  8. Fortov, V.E, Vasilyak, L.M., Vetchinin, S.P., Zimnukhov, V.S., Nefedov, A.P. and Polyakov, D.N., Plasma-dust structures at cryogenic temperatures, Dokl. Phys., 2002, vol. 47, no. 1, pp. 21–24.

    Article  Google Scholar 

  9. Fortov, V.E., Vasilyak, L.M., Vetchinin, S.P., Zimnukhov, V.S., Polyakov, D.N., Dusty structures in cryogenic plasma, 9th Workshop on the Physics of Dusty Plasmas, Iowa, 2001. http://dusty.physics.uiowa.edu/~goree/workshop/03oralsessions.pdf, p. 2.

    Google Scholar 

  10. Vasilyak, L. M., Vetchinin, S. P., Zimnukhov, V. S., Nefedov, A. P., Polyakov, D. N., and Fortov, V. E., Dusty structures in cryogenic plasma, Proc. XXV Int. Conf. Phenom. Ionized Gases, Nagoya: Nagoya University, 2001, vol. 3, pp. 55–56.

    Google Scholar 

  11. Jellum, G.M., Daugherty, J.E., and Graves, D.B., Partlcle thermophoresis in low pressure glow discharges, J. Appl. Phys.,1991, vol. 69, no. 10, pp. 6923–6934.

    Article  Google Scholar 

  12. Balabanov, V.V., Vasilyak, L.M., Vetchinin, S.P., Nefedov, A.P., Polyakov, D.N., and Fortov, V.E., The effect of the gas temperature gradient on dust structures in a glow-discharge plasma, J. Eng. Techn. Res., 2001, vol. 92, no. 1, pp. 86–92.

    Google Scholar 

  13. Green, H.L. and Lane, W.R., Particulate Clouds: Dusts, Smokes and Mists, London: Spon Ltd., 1964.

    Google Scholar 

  14. Gallis, M.A., Rader, D.J., and Torczynski, J.R., Thermophoresis in rarefield gas flows, Aerosol Sci. Technol., 2002, vol. 36, pp. 1099–1117.

    Article  Google Scholar 

  15. Vasilyak, L.M., Vetchinin, S.P., Zimnukhov, V.S., Polyakov, D.N., and Fortov, V.E., Dust particles in thermophoretic trap in plasma, J. Exp. Theor. Phys., 2003, vol. 96, no. 3, pp. 436–439.

    Article  Google Scholar 

  16. Asinovskii, E.I., Fortov, V.E., Kirillin, A.V., Markovets, V.V., Nefedov, A.P., Petrov, O.F., Dusty structures in helium plasma at temperatures of 300, 77 and 4.2 K, Contr. Pap. IV Int. Conf. Plasma Phys. Plasma Techn., Minsk, 2003, vol. 2, pp. 849–852.

    Google Scholar 

  17. Uotani, N., Kubota, J., Sekine, W., Chikasue, M., Shindo, M., and Ishihara, O., Dust charging in collisional plasma in cryogenic environment., J. Plasma Fusion Res. Series, 2010, vol. 9, pp. 404–409.

    Google Scholar 

  18. Antipov, S.N., Asinovskii, E.I., Fortov, V.E., Kirillin, A.V., Markovets, V.V., Petrov, O.F. and Platonov V.I., Dust structures in cryogenic gas discharges, Phys. Plasmas, 2007, vol. 14, no. 4, p. 090701.

    Article  Google Scholar 

  19. Antipov, S.N., Asinovskii, E.I., Kirillin, A.V., Maiorov, S.A., Markovets, V.V., Petrov, O.F., and Fortov, V.E., Charge and structures of dust particles in a gas discharge at cryogenic temperatures, J. Exp. Theor. Phys., 2008, vol. 106, no. 4, pp. 830–837.

    Article  Google Scholar 

  20. Kubota, J., Kojima, C., Sekine, W., and Ishihara, O., Coulomb cluster in a plasma under cryogenic environment, J. Plasma Fusion Res. Series, 2009, no. 8, pp. 286–289.

    Google Scholar 

  21. Ishihara, O., Low-dimensional structures in a complex cryogenic plasma, Plasma Phys. Contr. Fusion, 2012, vol. 54, no. 7, p. 124020.

    Article  Google Scholar 

  22. Dyugaev, A.M., Grigor’ev, P.D., and Lebedeva, E.V., Charged macroparticles over liquid helium, Low Temp. Phys., 2012, vol. 38, pp. 1001–1004.

    Article  Google Scholar 

  23. Vasilyak, L.M., Petrov, O.F., Polyakov, D.N., Shumova, V.V., and Fortov, V.E., Dense dust clouds formation in cryogenic plasma of glow discharge in neon. Abstracts of Papers, XXV Int. Conf. on Eqs. State Matter, Elbrus, 2010, pp. 170–171.

    Google Scholar 

  24. Polyakov, D.N., Shumova, V.V., Vasilyak, L.M., and Fortov, V.E., Structural phase transitions in cryogenic dust plasma of glow discharge, Abstracts of Papers, Strongly Coupled Coulomb Systems, 2011, p. 129.

    Google Scholar 

  25. Polyakov D.N. Vasilyak L. M., and Shumova, V. V., Superdense dust structures in cryogenic plasma of glow discharge in neon, Mater. VI Vseross. Konf. po Fiz. Elektron. FE-2010 (Proc. VI All Russ. Conf. Phys. Elektron. FE-2010), Makhachkala, 2010, pp. 164–169.

    Google Scholar 

  26. Polyakov, D.N., Shumova, V. V., and Vasilyak, L. M., Second order phase transitions in cryogenic dust plasma of glow discharge, Abstract Papers, XXVII Int. Conf. on Interact. Intense Energy Fluxes with Matter, Elbrus, 2012, p. 147.

    Google Scholar 

  27. Polyakov, D. N., Shumova, V.V., and Vasilyak, L. M., The electric field alteration in self-organizing of dusty plasma under cryogenic temperatures, Abstracts of Papers, 4th Int. Conf. on Phys. Dusty and Burning Plasmas, Odessa, 2013, pp. 101–104.

    Google Scholar 

  28. Fortov, V.E. and Morfill, G.E., Complex and Dusty Plasmas From Laboratory to Space, CRC Press, Taylor&Francis Group, Boca Raton, 2009.

    Book  Google Scholar 

  29. Ikezi, H., Coulomb solid of small particles in plasmas, Phys. Fluids, 1986, vol. 29, pp. 1764–1766.

    Article  Google Scholar 

  30. Stevens, M. J. and Robbins, M. O., Melting of Yukawa systems: A test of phenomenological melting criteria, J. Chem. Phys., 1993, vol. 98, pp. 2319–2324.

    Article  Google Scholar 

  31. Hamaguchi, S., Farouki, R.T., and Dubin, D.H.E., Triple point of Yukawa systems, Phys. Rev., Ser. E, 1997, vol. 56, pp. 4671–4682.

    Article  Google Scholar 

  32. Meijer, E.J. and Frenkel D., Melting line of Yukawa system by computer simulation, J. Chem. Phys., 1991, vol. 94, pp. 2269–2271.

    Article  Google Scholar 

  33. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., and Petrov, O.F., Dusty plasmas, Usp. Fiz. Nauk, 2004, vol. 47, no. 5, pp. 447–492.

    Article  Google Scholar 

  34. Antipov, S.N., Kirillin, A.V., and Nizovskii, V.L., Kriogennaya plazma gazovogo razryada (Cryogenic Plasma of a Gas Discharge), Moscow: Yanus-K, 2011.

    Google Scholar 

  35. Polyakov, D.N., Shumova, V.V., and Vasilyak, L.M., Positive column of glow discharge with dust particles, Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 2, pp. 114–124.

    Article  Google Scholar 

  36. Vasilyak, L.M., Polyakov, D.N., and Shumova V.V., Glow discharge positive column with dust particles in neon, Contrib. Plasma Phys., 2013, vol. 53, nos. 4–5, pp. 432–435.

    Article  Google Scholar 

  37. Vasilyak, L.M., Polyakov, D.N., and Shumova, V.V., Dust particles influence on cryogenic plasma of glow discharge in neon, Am. Inst. Phys. Conf. Proc., 2011, vol. 1397, pp. 401–402.

    Google Scholar 

  38. Polyakov, D.N., Vasilyak, L.M., and Shumova, V.V., On the reduced electric field in the region of phase transitions in cryogenic dust plasma of glow discharge, Abstracts of Papers, XXVIII Int. Conf. on Interact. Intense Energy Fluxes with Matter, Elbrus, 2013, p. 158.

    Google Scholar 

  39. Boufendi, L., Jouanny, M.Ch., Kovacevic, E., Berndt, J., and Mikikian, M., Dusty plasma for nanotechnology, J. Phys. Appl. Phys., Ser. D, 2011, vol. 44, no. 6, p. 174035.

    Article  Google Scholar 

  40. Cavarroc, M., Mikikian, M., Couedel, L., and Boufendi, L., Formation of single-crystal silicon nanoparticles at very low gas temperature in an RF silane-based discharge, Europhys. Conf. Abstr., 2006, vol. 30, no. 1, P–4.043.

    Google Scholar 

  41. Bogaerts, A., Neyts, E., Gijbels, R., and van der Mullen, J., Gas discharge plasmas and their applications, Spectrochim. Acta, 2002, vol. 57, Ser. B, pp. 609–658.

    Article  Google Scholar 

  42. Vasilyak, L.M., Vetchinin, S.P., Polyakov, D.N., and Fortov, V.E., The methods of changing the density of particles in Coulomb structures KDF in plasma, Vest. Dagestan Univ. (Natural Sci.), 2007, vol. 4, pp. 24–28.

    Google Scholar 

  43. Cavarroc, M., Mikikian, M., Tessier, Y., and Boufendi, L., Nanostructured Silicon Thin Films Deposited Under Dusty Plasma Conditions, IEEE Transact. Plasma Sci., 2008, vol. 36, no. 4, pp. 1016–1017.

    Article  Google Scholar 

  44. Tsytovich, V. N., Morfill, G. E., Vladimirov, S. V., and Thomas, H. M., Elementary Physics of Complex Plasmas. Springer Series on Lect. Notes Phys., Springer, Berlin Heidelberg, 2008.

    Book  Google Scholar 

  45. Konuma, M., Film Deposition by Plasma Techniques Springer Series on Atoms+Plasmas, Springer-Verlag Berlin Heidelberg, 1992.

    Book  Google Scholar 

  46. Kersten, H., Thieme, G., Frîhlich, M., Bojic, D., Tung, D. H., Quaas, M., Wulff, H., and Hippler, R., Complex (dusty) plasmas: Examples for applications and observation of magnetron induced phenomena, Pure Appl. Chem., 2005, vol. 77, no. 2, pp. 415–428.

    Article  Google Scholar 

  47. Vasilyak, L.M., Vasiliev, M.N., Vetchinin, S.P., Polyakov, D.N., and Fortov V.E., Vapor phase deposition of coatings onto dust particles in combined plasma, Tech. Phys. Lett., 2005, vol. 31, no. 10, pp. 827–829.

    Article  Google Scholar 

  48. d’Agostino, R., Favia, P., Oehr, C., and Wertheimer, M.R., Plasma Processes and Polymer, Wiley-VCH, 2005.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Polyakov.

Additional information

Original Russian Text © D.N. Polyakov, L.M. Vasilyak, V.V. Shumova, 2015, published in Elektronnaya Obrabotka Materialov, 2015, No. 2, pp. 41–49.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, D.N., Vasilyak, L.M. & Shumova, V.V. Synergetics of dusty plasma and technological aspects of the application of cryogenic dusty plasma. Surf. Engin. Appl.Electrochem. 51, 143–151 (2015). https://doi.org/10.3103/S106837551502012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837551502012X

Keywords

Navigation