Skip to main content
Log in

Physicochemical and adsorption-structural properties of diatomite modified with aluminum compounds

  • Electrical Processes in Engineering and Chemistry
  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstarct

A selective sorbent based on the diatomite of local origin modified with aluminum compounds has been studied by the methods of powder X-ray diffraction; FTIR; and differential thermal, adsorption-structural (BET), and chemical analyses. The surface modification of diatomite is carried out by heating it in an NaOH solution and its subsequent treatment with a solution of aluminum salt and ammonia. The amorphous surface silica partially dissolves during the treatment with NaOH and forms an aluminosilicate compound at the addition of an aluminum salt. The obtained material is deposited both on the surface of the diatomite and on the inner surface of the macro- and larger mesopores, which leads to the development of the specific surface area of 81.8 m2/g, which is 2.5 times larger than the corresponding value in the initial diatomite (37.5 m2/g). The precipitated aluminosilicate compound with the concentration equal to 0.34 g of Al/g of aluminosilicate contributes to the development of a porous structure in the treated diatomite, so the volume of the mesopores increases from 0.029 to 0.079 cm3/g and that of the micropores from 0.012 to 0.027 cm3/g. The qualitative changes in the composition of the obtained sorbent are confirmed by the emergence of new lines in the X-ray diffraction patterns, which are characteristic for aluminosilicates, and additional peaks in the infrared spectra corresponding to the stretching vibrations of Si-O-Al. The selectivity of the obtained adsorbent with respect to fluoride ions increases significantly, specifically, its adsorption capacity increases from 8.9 to 57.6 mg of F/g at the initial fluorine concentration equal to 0.15 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eskandarpour, A., Onyango, M.S., Ochieng, A., and Asai, S., Removal of Fluoride Ions from Aqueous Solution at Low pH Using Schwertmannite, J. Hazard. Mater., 2008, vol. 152, pp. 571–579.

    Article  Google Scholar 

  2. Gopal, V. and Elango, K.P., Equilibrium, Kinetic and Thermodynamic Studies of Adsorption of Fluoride Onto Plaster Of Paris, J. Hazard. Mater., 2007, vol. 141, pp. 98–105.

    Article  Google Scholar 

  3. Srimurali, M., Pragathi, A., and Karthikeyan, J., A Study on Removal of Fluorides from Drinking Water onto Low-Cost Materials, Environ. Poll., 1998, vol. 99, pp. 285–289.

    Article  Google Scholar 

  4. Fan, X., Parker, D.J., and Smith, M.D., Adsorption Kinetics of Fluoride on Low Cost Materials, Water Res., 2003, vol. 37, pp. 4929–4937.

    Article  Google Scholar 

  5. Agarwal, M., Rai, K., Shrivastav, R., and Dass, S., A Study on Fluoride Sorption by Montmorillonite and Kaolinite, Water Air Soil Pollut., 2002, vol. 141, pp. 247–261.

    Article  Google Scholar 

  6. Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T., and Tanada, S., Adsorption of Fluoride Ions onto Carbonaceous Materials, J. Colloid Interface Sci., 2004, vol. 275, pp. 35–39.

    Article  Google Scholar 

  7. Chidambaram, S., Ramanathan, A.L., and Vasudevan, S., Fluoride Removal Studies in Water Using Natural Materials, Water SA, 2003, vol. 29,no. 3, pp. 339–343.

    Google Scholar 

  8. Ayoob, S., Gupta, A.K., Bhakat, P.B., and Bhat, V.T., Investigations on the Kinetics and Mechanisms of Sorptive Removal of Fluoride from Water Using Alumina Cement Granules, J. Chem. Eng., 2008, vol. 140, pp. 6–14.

    Article  Google Scholar 

  9. Tor, A., Removal of Fluoride from an Aqueous Solution by Using Montmorillonite, Desalination, 2006, vol. 201, pp. 267–276.

    Article  Google Scholar 

  10. Sujana, M.G., Thakur, R.S., and Rao, S.B., Removal of Fluoride from Aqueous Solution by Using Alum Sludge, J. Colloid Interface Sci., 1998, vol. 206, pp. 94–101.

    Article  Google Scholar 

  11. Bakr, H.E.G.M.M., Diatomite: Its Characterization, Modifications and Applications, Asian J. Mater. Sci., 2010, vol. 2,no. 3, pp. 121–136.

    Article  Google Scholar 

  12. Korunic, Z., Diatomaceous Earths, a Group of Natural Insecticides, J. Stored Prod. Res., 1998, vol. 34, pp. 87–97.

    Article  Google Scholar 

  13. Aytas, S., Akyil, S., Aslani, M.A.A., and Aytekin, U., Removal of Uranium from Aqueous Solution by Diatomite (Kieselguhr), J. Radioanal. Nucl. Chem., 1999, vol. 240,no. 3, pp. 973–976.

    Article  Google Scholar 

  14. Badii, K. and Ardejani, F.D., M. Saberi A., Shafaei, S.Z., Adsorption of Acid Blue 25 Dye in Aqueous Solutions, Indian J. Chem. Technol., 2010, vol. 17, pp. 7–16.

    Google Scholar 

  15. Wu, J., Yang, Y.S., and Lin, J., Advanced Tertiary Treatment of Municipal Wastewater Using Raw and Modified Diatomite, J. Hazard. Mater., 2005, vol. B127, pp. 196–203.

    Article  Google Scholar 

  16. Song, H., Jiang, H., Liu, X., and Meng, G., Nano TiO2 Deposited on Crude Mineral and the Photoactivity to the Degradation of Chloroform, Am. J. Environ. Sci., 2006, vol. 2,no. 2, pp. 60–65.

    Article  Google Scholar 

  17. Jia, Y., Han, W., Xiong, G., and Yang, W., Diatomite as High Performance and Environmental Friendly Catalysts for Phenol Hydroxylation with H2O2, Sci. Tech. Adv. Mater., 2007, vol. 8, pp. 106–109.

    Article  Google Scholar 

  18. Zhang, Z. and Wang, Z., Diatomite-Supported Pd Nanoparticles: An Efficient Catalyst for Heck and Suzuki Reactions, J. Org. Chem., 2006, vol. 71,no. 19, pp. 7485–748.

    Article  Google Scholar 

  19. Nenadovic, S., Nenadovic, M., Kovacevic, R., Matovic, Lj., Matovic, B., and Jovanovic, Z., Influence of Diatomite Microstructure on its Adsorption Capacity for Pb(II), Sci. Sinter., 2009, vol. 41, pp. 309–317.

    Article  Google Scholar 

  20. Ubonchonlakat, K., Sikong, L., and Phochanugoon, S., Photocatalytic Activity of Titanium Dioxide Coating on Diatomite by Sol-Gel Method, Proc. Technology and Innovation for Sustainable Development. Conference Faculty of Engineering, K. Kaen University, Thailand, 2008, pp. 500–503.

  21. Lingaraju, D., Ramji, K., Devi, M.P., and Rao, N.B.M., Synthesis, Fictionalization and Characterization of Silica Hybrid Nanocomposites, International Journal of Nanotechnology and Applications, 2010, vol. 4,no. 1, pp. 21–30.

    Google Scholar 

  22. Rangsriwatananon, K., Chaisena, A., and Thongkasam, C., Thermal and Acid Treatment on Natural Raw Diatomite Influencing in Synthesis of Sodium Zeolites, J. Porous Mater., 2008, vol. 15, pp. 499–505.

    Article  Google Scholar 

  23. Losev, S.S., Application of Natural Silica, Diatomite Celite 545, for Quantitative Determination of Co+2 Ions, Visnik UzhNU, Seriya Khimiya, 2009, no. 22, pp. 228–122.

  24. Chen, Z., Li, H., and Wang, L., Enhancement in Activity of a Vanadium Catalyst for the Oxidation of Sulfur Dioxide by Radio Frequency Plasma, J. Natur. Gas Chem., 2003, vol. 12, pp. 195–200.

    Google Scholar 

  25. Ilia, I.K., Stamatakis, M.G., and Perraki, Th.S., Mineralogy and Technical Properties of Clayey Diatomites from North and Central Greece, Cent. Eur. J. Geosci., 2009, vol. 1,no. 4, pp. 393–403.

    Article  Google Scholar 

  26. Mohamedbakr, H. and Burkitbaev, M., Elaboration and Characterization of Natural Diatomite in Aktyubinsk Kazakhstan, The Open Mineralogy Journal, 2009, vol. 3, pp. 12–16.

    Article  Google Scholar 

  27. Khraisheh, M.A.M., Al-Ghouti, M.A., Allen, S.J., and Ahmad, M.N., Effect of OH and Silanol Groups in the Removal of Dyes from Aqueous Solution Using Diatomite, Water Res., 2005, vol. 39, pp. 922–932.

    Article  Google Scholar 

  28. Goren, R., Baykara, T., Marsoglu, M., Effects of Purification and Heat Treatment on Pore Structure and Composition of Diatomite, Br. Ceramic Trans., 2002, vol. 101, pp. 177–180.

    Article  Google Scholar 

  29. Khraisheh, M.A.M., Al-Degs, YahyaS., and Mcminn, W.A.M., Remediation of Wastewater Containing Heavy Metals Using Raw and Modified Diatomite, Chem. Eng. J., 2004, no. 2, pp. 177–184.

  30. Al-Degs, Y., Khraisheh, M.A.M., and Tutunji, M.F., Sorption of Lead Ions on Diatomite and Manganese Oxides Modified Diatomite, Water Res., 2001, vol. 35, pp. 3724–3728.

    Article  Google Scholar 

  31. Al-Ghouti, M., Khraisheh, M.A.M., Ahmad, M.N.M., and Allen, S., Thermodynamic Behavior and the Effect of Temperature on the Removal of Dyes from Aqueous Solution Using Modified Diatomite: A Kinetic Study, J. Colloid Interface Sci., 2005, vol. 287, pp. 6–13.

    Article  Google Scholar 

  32. Wu, J., Yang, Y.S., and Lin, J., Advanced Tertiary Treatment of Municipal Wastewater Using Raw and Modified Diatomite, J. Hazard. Mater., 2005, vol. 127, pp. 196–203.

    Article  Google Scholar 

  33. Xiong, W. and Peng, J., Development and Characterization of Ferrihydrite-Modiffied Diatomite as a Phosphorus Adsorbent, Water Res., 2008, vol. 42, pp. 4869–4877.

    Article  Google Scholar 

  34. Hsien, K.J., Tsai, W.T., and Su, T.Y., Preparation of Diatomite-TiO Composite for Photodegradation of Bisphenol-A in Water, J. Sol-Gel Sci. Technol., 2009, vol. 51, pp. 63–69.

    Article  Google Scholar 

  35. Buzaeva, M.V., Reducing Environmental Threat of Waste Waters Containing the Products of Decomposition of Lubrication and Coolant Fluids by Means of Chemically Modified Diatomite, Extended Abstract of Cand. Sci. Dissertation, Ul’yanovsk, 2006.

  36. Bogdevich, O.P., Izmailova, D.N., and Bolotin, O.A., Application of Modified Sorbents for Elimination of Tri- and Pentavalent Arsenic Ions from Aqueous Solutions, Buletinul Institutului De Geofizica I Geologie Al ASM, 2006, no. 1, pp. 118–125.

  37. Grigoryan, K.G., Arutunyan, G.A., Baginova, L.G., and Grigoryan, G.O., Synthesis of Calcium Hydromonosilicate from Diatomite under Hydrothermal Conditions and Its Transformation into Wollastonite, Khimicheskaya Tekhnologiya, 2008, vol. 9, pp. 101–103.

    Google Scholar 

  38. Hadjar, H., Hamdi, B., Jaber, M., Brendle, J., Kessaissia, Z., Balard, H., and Donnet, J.B., Elaboration and Characterization of New Mesoporous Materials from Diatomite and Charcoal, Micropor. Mesopor. Mater., 2008, vol. 107, pp. 219–226.

    Article  Google Scholar 

  39. Zelentsov, V., Datsko, T., and Dvornikova, E., Studiul aplicabilitatii diatomitului modificat pentru inlaturarea ionilor de fluor din apele naturale, Comunicri tiinifice. Simpozion Internaional “Mediul i Industria”, Romania, Bucharest, 2005, vol. 1, pp. 213–218.

    Google Scholar 

  40. Zelentsov, V.I., Datsko, T.Ya., and Dvornikova, E.E., Fluorine Adsorption by Aluminum Oxihydrates Subjected to Thermal Treatment, Surf. Eng. Appl. Electrochem., 2008, vol. 44,no. 1, pp. 64–68.

    Article  Google Scholar 

  41. Zelentsov, V.I., Datsko, T., and Dvornikova, E., Adsorbia fluorului de ctre oxidul de aluminiu, Proc. of the 33rd Annual Congress of the American Romanian Academy of Arts and Sciences (ARA), Sibiu, Romania, 2009, vol. 2, pp. 392–395.

    Google Scholar 

  42. Zelentsov, V. and Datsko, T., Active Pore Materials Based on Sludge of Cr-Ni Alloy Electrochemical Machining, Moldavian J. Phys. Sci., 2006, vol. 5,no. 2, pp. 162–168.

    Google Scholar 

  43. Yeun, C. Wu and Anan Nitya, Water Defluoridation with Activated Alumina, J. Environ. Eng. Div., 1979, vol. 105,no. 2, pp. 357–367.

    Google Scholar 

  44. Meenakshi and Maheshwari, R.C., Fluoride in Drinking Water and its Removal, J. Hazard. Mater., 2006, vol. 137,no. 1, pp. 456–463.

    Article  Google Scholar 

  45. Ghorai, S. and Pant, K.K., Equilibrium, Kinetics, and Breakthrough Studies for Adsorption of Fluoride on Activated Alumina, Separ. Purif. Technol., 2005, vol. 42,no. 3, pp. 265–267.

    Article  Google Scholar 

  46. Tripathy, S.S., Bersillon, J.-L., and Gopal, K., Removal of Fluoride from Drinking Water by Adsorption onto Alum-Impregnated Activated Alumina, Separ. Purif. Technol., 2006, vol. 50,no. 3, pp. 310–317.

    Article  Google Scholar 

  47. Lounici, H., Belhocinea, D., Grib, H., Drouiche, M., Paussb, A., and Mameri, N., Fluoride Removal with Electroactivated Alumina, Desalination, 2004, vol. 161, pp. 287–293.

    Article  Google Scholar 

  48. Krishna, B., Sanat, K.S., and Uday, C.G., Adsorption of Fluoride from Aqueous Solution by a Synthetic Iron(III)-Aluminum(III) Mixed Oxide, Ind. Eng. Chem. Res., 2007, vol. 46,no. 16, pp. 5346–5356.

    Article  Google Scholar 

  49. Zelentsov, V., Datsko, T., and Dvornikova, E., Procedeu de obinere a sorbentului pe baza de diatomit pentru purificare de ionii de fluor, MD 3973C2, 2010-07-31.

  50. Bilinkis, G.M., Peres, F.S., and Kogos, A.Yu., Major Relationships in Occurrence of Diatomites in Moldova, Geol. Zh., 1987, vol. 47,no. 4, pp. 15–22.

    Google Scholar 

  51. Bilinkis, G.M., Geodinamika krainego yugo-zapada Vostochno-Evropeiskoi platformy v epokhu morfogeneza (Geodynamics of Utmost South-West of Eastern-European Platform in Epoch of Morphogenesis), Chishinau: Biznes-Elita, Lextoria, 2004, pp. 14–16.

    Google Scholar 

  52. Bolotin, O.A., Romanov, L.F., Dubinovskii, V.L., Syutkin, S.V, and Angelov, P.E., Selection of Activation Parameters of Moldavian Diatomites for Obtaining Sorbents for Water Treatment, Abstracts of Papers, The Third International Conference Ecological Chemistry, Chisinau, Republic of Moldova, 2005, p. 47.

  53. Shin, E.W., Han, J.S., Jang, M., Min, S.-H., Park, J.K., and Rowell, R.M., Phosphate Adsorption on Aluminum-Impregnated Mesoporous Silicates: Surface Structure and Behaviour of Adsorbents, Environ. Sci. Technol., 2004, vol. 38, pp. 912–917.

    Article  Google Scholar 

  54. Parks, G.A. and de Bruyn, P.L., The Zero Point of Charge of Oxides, J. Phys. Chem, 1962, vol. 66, pp. 967–973.

    Article  Google Scholar 

  55. Yopps, J.A. and Fuerstenau, D.W., The Zero Point of Charge of Alpha-Alumina, J. Colloid Sci., 1964, vol. 19,no. 1, pp. 61–71.

    Article  Google Scholar 

  56. Nayak, P.S. and Singh, B.K., Instrumental Characterization of Clay by XRF, XRD and FTIR, Bull. Mater. Sci., 2007, vol. 30,no. 3, pp. 235–238.

    Article  Google Scholar 

  57. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt.1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, vol. 31, p. 578.

  58. Greg, S. and Sing, K., Adsorbtsiya, udel’naya poverkhnost’, poristost’ (Adsorption, Specific Surface, and Porosity), Moscow: Mir, 1984, 306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ya. Datsko.

Additional information

Original Russian Text © T.Ya. Datsko, V.I. Zelentsov, E.E. Dvornikova, 2011, published in Elektronnaya Obrabotka Materialov, 2011, no. 6, pp. 59–68.

About this article

Cite this article

Datsko, T.Y., Zelentsov, V.I. & Dvornikova, E.E. Physicochemical and adsorption-structural properties of diatomite modified with aluminum compounds. Surf. Engin. Appl.Electrochem. 47, 530–539 (2011). https://doi.org/10.3103/S1068375511060081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375511060081

Keywords

Navigation