Skip to main content
Log in

Natural Aluminosilicates Modified with Organosilicon Thiosemicarbazides for the Extraction of Nickel(II) Ions

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Modified adsorbents are obtained by the immobilization of 1-(3-triethoxysilylpropyl)thiosemicarbazide (TSC), 1-(3-triethoxysilylpropyl)-1-phenylthiosemicarbazide (1-FTSC), and 3-1-(3-triethoxysilylpropyl)-4-phenylthiosemicarbazide (4-FTSC) on the surface of natural microporous aluminosilicates (ASs). The morphology and elemental composition of the surface of the modified ASs are studied by scanning electron microscopy (SEM) and analysis of energy-dispersive X-ray spectra (EDXSs). The degree of silanization of ASs is determined by the structure of organosilicon thiosemicarbazides and decreases in the series AS–TSC > AS–4-FTSC > AS–1-FTSC. The presence of characteristic for TSC, 1-FTSC, and 4-FTSC structural groups in the composition of the modified samples is confirmed by IR spectroscopy. The AS–TSC, AS–1-FTSC, and AS–4-FTSC modified aluminosilicates are characterized as adsorbents for the extraction of Ni(II) ions from aqueous solutions. The time of establishment of adsorption equilibrium is 60 min in the AS–TSC adsorbent–adsorbate system and 120 min for the AS–1-FTSC adsorbent–adsorbate, AS–4-FTSC adsorbent–adsorbate, and AS adsorbent–adsorbate systems. The maximum values of adsorption of Ni(II) ions are 1.71 mmol/g (100.8 mg/g), 0.25 mmol/g (15.0 mg/g), 0.37 mmol/g (21.9 mg/g), respectively, for the samples of AS–TSC, AS–1-FTSC, and AS–4-FTSC. The obtained data on adsorption are in the best possible way described by the Langmuir and Freundlich models. Presumably, the adsorption of heavy metal ions on the surface of the AS–TSC, AS–1-FTSC, and AS–4-FTSC modified zeolites is accompanied by the formation of chelate complexes (with the 1 : 1 composition) formed due to the donor–acceptor interaction of the metal ions with the nitrogen and sulfur atoms of the thiosemicarbazide fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Custodio, M., Cuadrado, W., Penaloza, R., Montalvo, R., Ochoa, S., and Quispe, J., Water (Basel, Switz.), 2020, vol. 12, p. 1946.

    Google Scholar 

  2. Khan, A., Khan, S., Khan, M.A., Qamar, Z., and Waqas, M., Environ. Sci. Pollut. Res., 2015, no. 22, p. 13772.

  3. Singh, N., Gupta, V.K., Kumar, A., and Sharma, B., Front. Chem., 2017, no. 5, p. 70.

  4. Zeolite Chemistry and Catalysis, ACS Monograph 171, Rabo, J.A., Ed., Washington, DC: American Chemical Society, 1976.

    Google Scholar 

  5. Malamis, S. and Katsou, E., A, J. Hazard. Mater., 2013, vol. 252, p. 428.

    Article  Google Scholar 

  6. Mirzababaei, S.N., Taghizadeh, M., and Alizadeh, E., Desalin. Water Treat., 2016, vol. 57, no. 26, p. 12204.

    Article  CAS  Google Scholar 

  7. Rodriguez-Iznaga, I., Rodriguez-Fuentes, G., and Petranovskii, V., Microporous Mesoporous Mater., 2018, vol. 255, p. 200.

    Article  CAS  Google Scholar 

  8. Wang, Y. and Chao, X., Fresenius Environ. Bull., 2015, vol. 24, no. 12, p. 4316.

    CAS  Google Scholar 

  9. Olad, A., Ahmadi, S. and Rashidzadeh, A., Desalin. Water Treat., 2013, vol. 51, nos. 37–39, p. 7172.

    Article  CAS  Google Scholar 

  10. Malekpour, A., Edrisi, M., and Hajialigol, S., J. Radioanal. Nucl. Chem., 2011, vol. 288, no. 3, p. 663.

    Article  CAS  Google Scholar 

  11. Panneerselvam, P., Bala, V.S., and Thinakaran, N., E-J. Chem., 2009, vol. 6, no. 3, p. 729.

    Article  CAS  Google Scholar 

  12. Choi, J., Septian, A., and Shin, W.S., Minerals, 2020, vol. 10, p. 980.

    Article  CAS  Google Scholar 

  13. Wamba, A.G.N., Kofa, G.P., Koungou, S.N., Thue, P.S., Lima, E.C., Reis, G.S., and Kayem, J.G., J. Environ. Chem. Eng., 2018, vol. 6, p. 3192.

    Article  CAS  Google Scholar 

  14. Kukwa, R.E. and Dann, S.E., Desalin. Water Treat., 2019, vol. 153, p. 136.

    Article  CAS  Google Scholar 

  15. Pomazkina, O.I., Filatova, E.G., and Pozhidaev, Yu.N., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 3, p. 416.

    Article  CAS  Google Scholar 

  16. Filatova, E.G., Pozhidaev, Yu.N., and Pomazkina, O.I., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 5, p. 911.

    Article  Google Scholar 

  17. Filatova, E.G., Izv. VUZov, Prikl. Khim. Biotekhnol., 2015, no. 2 (13), p. 97.

  18. Pomazkina, O.I., Filatova, E.G, and Pozhidaev, Yu.N., J. Water Chem. Technol., 2018, vol. 40, no. 4, p. 196.

    Article  Google Scholar 

  19. Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, New York: Wiley, 1973.

    Google Scholar 

  20. Vlasova, N.N., Oborina, E.N., Belousova, L.I., and Larina, L.I., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p. 71.

    Article  CAS  Google Scholar 

  21. Lur’e, Yu.Yu. and Rybnikova, A.I., Khimicheskii analiz proizvodstvennykh stochnykh vod (Chemical Analysis of Industrial Waste Waters), Moscow: Khimiya, 1974.

  22. Marczenko, Z., Spectrophotometric Determination of the Elements, Ellis Horwood Series in Analytical Chemistry, New York: Wiley, 1976.

    Google Scholar 

  23. Kantiranis, N., Sikalidis, K., Godelitsas, A., Squires, C., Papastergios, G., and Filippidis, A., J. Environ. Manage., 2011, vol. 92, p. 1569.

    Article  CAS  Google Scholar 

  24. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., and Sing, K.S.W., Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Elsevier, 2013.

    Google Scholar 

  25. Tsivadze, A.Yu., Rusanov, A.I., Fomkin, A.A., et al., Fizicheskaya khimiya adsorbtsionnykh yavlenii (Physical Chemistry of Adsorption Phenomena), Moscow: Granitsa, 2011.

  26. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Yurait, 2013.

  27. Flanigen, E.M., Khatami, H., and Szymanski, H.A., Adv. Chem., 1971, vol. 101, p. 201.

    Article  CAS  Google Scholar 

  28. Król, M., Mozgawa, W., Jastrzębski, W., and Barczyk, K., Microporous Mesoporous Mater., 2018, vol. 156, p. 181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Filatova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, E.G., Chugunov, A.D., Pozhidaev, Y.N. et al. Natural Aluminosilicates Modified with Organosilicon Thiosemicarbazides for the Extraction of Nickel(II) Ions. Prot Met Phys Chem Surf 58, 469–477 (2022). https://doi.org/10.1134/S2070205122030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030078

Keywords:

Navigation