Skip to main content

Advertisement

Log in

The System for Numerical Prediction of Weather Events (Including Severe Ones) for Moscow Megacity: The Prototype Development

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The COSMO-Ru1Mp prototype of the numerical weather prediction system for the Moscow region with a grid spacing of 1 km and with the included and adapted TERRA_URB parameterization module for the urban areas is implemented. The module is provided with necessary information on the urban development and on the sources of anthropogenic heat based on the adaptation of open data. The module is interfaced with the COSMO-Ru operational system for the regional numerical weather prediction developed in the Hydrometcenter of Russia. The primary testing of the COSMO-Ru1Mp is performed, including daily forecasts based on operational data. The advantage of this forecast system and the prospects of its further development are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Blinov and G. S. Rivin, “The COSMO-Ru Short-range Nonhydrostatic Mesoscale Weather Prediction System: A Technological Line,” Trudy Gidromettsentra Rossii, No. 365 (2017) [in Russian].

  2. A. V. Kislov, M. I. Varentsov, I. A. Gorlach, and L. I. Alekseeva, “Heat Island in the Moscow Agglomeration and Urban Amplification of Global Warming,” Vestnik MGU, Ser. 5, Geografiya, No. 4 (2017) [in Russian].

  3. Climate of Moscow under Global Warming, Ed. by A. V. Kislov (Moscow State Univ., Moscow, 2018) [in Russian].

    Google Scholar 

  4. G. S. Rivin, I. A. Rozinkina, R. M. Vil’fand, D. Yu. Alferov, E. D. Astakhova, D. V. Blinov, A. Yu. Bundel’, E. V. Kazakova, A. A. Kirsanov, M. A. Nikitin, V. L. Perov, G. V. Surkova, A. P. Revokatova, M. V. Shatunova, and M. M. Chumakov, “The COSMO-Ru System of Nonhydrostatic Mesoscale Short-range Weather Forecasting of the Hydrometcenter of Russia: The Second Stage of Implementation and Development,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

  5. M. V. Shatunova and G. S. Rivin, “COSMO-Ru1SFO High-resolution Model: Influence of External Parameters on the Model Output,” Trudy Gidromettsentra Rossii, No. 352 (2014) [in Russian].

  6. M. V. Shatunova, G. S. Rivin, and I. A. Rozinkina, “Visibility Forecasting for February 16–18, 2014 for the Region of the Sochi-2014 Olympic Games Using the High-resolution COSMO-Ru1 Model,” Meteorol. Gidrol., No. 8 (2015) [Russ. Meteorol. Hydrol., No. 8, 40 (2015)].

  7. A. Baklanov, C. S. B. Grimmond, D. Carlson, D. Terblanche, X. Tang, V. Bouchet, and A. Hovsepyan, “From Urban Meteorology, Climate and Environment Research to Integrated City Services,” Urban Climate, 23 (2018).

    Article  Google Scholar 

  8. P. Bauer, A. Thorpe, and G. Brunet, “The Quiet Revolution of Numerical Weather Prediction,” Nature, 525 (2015).

    Article  Google Scholar 

  9. W. Brutsaert, Evaporation into the Atmosphere: Theory, History and Applications, Ser. Environ. Fluid Mech., Vol. 1 (Springer Science+Business Media Dordrecht, 1982).

    Google Scholar 

  10. C. A. Doswell and D. W. Burgess, “Tornadoes and Tornadic Storms: A Review of Conceptual Models,” in The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophysical Monograph 79 (Amer. Geophys. Union, 1993).

  11. M. G. Flanner, “Integrating Anthropogenic Heat Flux with Global Climate Models,” Geophys. Res. Lett., No. 2, 36 (2009).

    Article  Google Scholar 

  12. COSMO Website, http://cosmo-model.org.

  13. GlobCover-2009 Data Website, http://datacatalog.worldbank.org/dataset/global-land-cover-2009.

  14. GlobCover Project Website, http://due.esrin.esa.int/page_globcover.php.

  15. 40th EWGLAM-25th SRNWP Workshop Website, http://srnwp.met.hu/Annual_Meetings/2018/download/thursday/Finnenkoetter_LM_MORUSES.

  16. Website, https://www.cawcr.gov.au/projects/verification.

  17. COSMO-CLM Community Website, www.clm-community.eu.

  18. OpenStreetMap Website, https://www.openstreetmap.org/#map=3/69.63/-44.12.

  19. D. Kiktev, P. Joe, G. Isaac, A. Montani, I.-L. Frogner, P. Nurmi, B. Bica, J. Milbrandt, M. Tsyrulnikov, E. Astakhova, A. Bundel, S. Belair, M. Pyle, A. Muravyev, G. Rivin, I. Rozinkina, T. Paccagnella, Y. Wang, J. Reid, T. Nipen, and K.-D. Ahn, “FROST-2014: The Sochi Winter Olympics International Project,” Bull. Amer. Meteorol. Soc., No. 9, 98 (2017).

  20. A. Martilli, A. Clappier, and M. W. Rotach, “An Urban Surface Exchange Parameterization for Mesoscale Models,” Boundary-Layer Meteorol., 104 (2002).

    Article  Google Scholar 

  21. T. R. Oke, G. Mills, A. Christen, and J. A. Voogt, Urban Climates (Cambridge Univ. Press, 2017).

  22. T. E. Samsonov and P. I. Konstantinov, “OpenStreetMap Data Assessment for Extraction of Urban Land Cover and Geometry Parameters Required by Urban Climate Modeling,” in Ext. Abstr. Proc. GIScience, September 23–26, 2014, Vienna, Austria.

  23. T. E. Samsonov, P. I. Konstantinov, and M. I. Varentsov, “Object-oriented Approach to Urban Canyon Analysis and Its Applications in Meteorological Modeling,” Urban Climate, 13 (2015).

    Article  Google Scholar 

  24. A. Sarkar and K. de Ridder, “The Urban Heat Island Intensity of Paris: A Case Study Based on a Simple Urban Surface Parameterization,” Boundary-Layer Meteorol., No. 3, 138 (2011).

    Article  Google Scholar 

  25. R. J. Trapp, Mesoscale-convective Processes in the Atmosphere (Cambridge Univ. Press, Cambridge, 2013).

    Book  Google Scholar 

  26. M. Varentsov, H. Wouters, V. Platonov, and P. Konstantinov, “Megacity-induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia,” Atmosphere, No. 2, 9 (2018).

    Article  Google Scholar 

  27. WMO Guide for Urban Integrated Hydrometeorological, Climate and Environmental Services, Part 1: Concept and Methodology, http://www.wmo.int/pages/prog/arep/gaw/documents/EC-70.pdf.

  28. H. Wouters, M. Demuzere, U. Blahak, K. Fortuniak, B. Maiheu, J. Camps, D. Tielemans, and N. P. M. van Lipzig, “Efficient Urban Canopy Parameterization for Atmospheric Modelling: Description and Application with the COSMO-CLM Model for a Belgian Summer,” Geosci. Model Dev., 9 (2016).

    Article  Google Scholar 

  29. G. Zangl, D. Reinert, P. Ripodas, and M. Baldauf, “The ICON (ICOsahedral, Non-hydrostatic) Modelling Framework of DWD and MPI-M: Description of the Nonhydrostatic Dynamical Core,” Quart. J. Roy. Meteorol. Soc., 141 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the experts of the Hydrometcenter of Russia, Roshydromet Main Computing Center, and Department of Meteorology and Climatology of Lomonosov Moscow State University, especially A.V. Kislov, S.V. Lubov, and M.V. Shatunova for assistance and useful discussions.

Funding

The research was supported by the grant for the implementation of activities on the development of the system for monitoring and forecasting of, as well as warning against severe and adverse weather events in Moscow city (the Resolution of the Government of Moscow No. 257-PP, April 3, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Rivin.

Additional information

Russian Text © The Author(s), 2019, published in Meteorologiya i Gidrologiya, 2019, No. 11, pp. 33–45.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivin, G.S., Vil’fand, R.M., Kiktev, D.B. et al. The System for Numerical Prediction of Weather Events (Including Severe Ones) for Moscow Megacity: The Prototype Development. Russ. Meteorol. Hydrol. 44, 729–738 (2019). https://doi.org/10.3103/S1068373919110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373919110025

Keywords

Navigation