Skip to main content
Log in

Wave clouds over mountains

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Main characteristics of the atmosphere disturbances over the mountains are calculated with a nonlinear two-dimensional stationary model of the airstream over mountains depending on the properties of the unperturbed upstream. A spatial humidity distribution over mountains is defined under assumption that water vapor is transported with airstreams like a passive pollutant. The derived humidity fields and calculated temperature distribution are used for determining the spatial relative humidity distribution over mountains. Critical values of the relative humidity in the interval of 70–100% are used for identifying the cloud zone boundaries. The analysis is performed on the cloud zone dependence on vertical distribution of relative humidity in the upstream and on the mountain form characteristics. The studies are conducted with a special reference to a complicated mountain relief in Southern Zagros (Iran).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Abramovich, “Some Peculiarities of Distribution of Meteorological Elements in the Lower Troposphere on Cloudy and Cloudless Days,” Trudy TsIP, No. 136 (1964) [Trans. Central Institute of Forecast, No. 136 (1964)].

  2. A. M. Baranov, O. G. Bogatkin, V. F. Goverdovskii, and V. D. Anikeeva, Aviation Meteorology (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  3. A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, et al., Cloud Physics, Ed. by A. Kh. Khrgian (Gidrometeoizdat, Leningrad, 1961) [in Russian].

    Google Scholar 

  4. L. N. Gutman, “Application of a Long Wave Method to the Problem of Mountain Upstream,” Dokl. Akad. Nauk SSSR, No. 3, 115 (1957) [Sov. Phys. Dokl., No. 3, 115 (1957)].

  5. L. R. Dmitrieva-Arrago, “Methods of Short-term Forecasting of Nonconvective Clouds and Precipitation Using a Moisture Transformation Model, with Microphysics Parametrization. 1. Moisture Transformation Model and Nonconvective Cloud Forecasting,” Meteorol. Gidrol., No. 2 (2004) [Russ. Meteorol. Hydrol., No. 2 (2004)].

  6. L. R. Dmitrieva-Arrago, L. F. Koloskova, and L. S. Orlova, “Testing Smagorinsky Graph for Determining Cloud Amount,” Trudy GGO, No. 236 (1969) [Trans. Main Geophysical Observatory, No. 236 (1969)].

  7. A. A. Dorodnitsyn, “Some Problems of the Upstream over the Earth Surface Roughness,” Trudy GGO, No. 23 (1940) [Trans. Main Geophysical Observatory, No. 23 (1940)].

  8. V. N. Kozhevnikov, The Atmosphere Disturbances from the Upstream over the Mountains (Nauchnyi Mir, Moscow, 1999) [in Russian].

    Google Scholar 

  9. V. N. Kozhevnikov, “On a Nonlinear Problem of Orographic Disturbance of the Stratified Airstream,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 7 (1963) [Izv., Ser. Geophys., No. 7 (1963)].

  10. V. N. Kozhevnikov, “Orographic Disturbances in Two-dimensional Stationary Problem,” Izv. Akad. Nauk SSSR, No. 1, 4 (1968) [Izv., No. 1, 4 (1968)].

  11. V. N. Kozhevnikov, Orographic Disturbances of the Airstream, Doctoral Dissertation in Mathematics and Physics (Mosk. Gos. Univ., Moscow, 1965) [in Russian].

    Google Scholar 

  12. V. N. Kozhevnikov and M. K. Bedanokov, “Wave Disturbances over the Crimea Mountains. Theory and Observations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].

  13. V. N. Kozhevnikov and M. K. Bedanokov, “Non-linear Multilayer Upstream Model of an Arbitrary Profile,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 24 (1993) [Izv., Atmos. Oceanic Phys., No. 6, 24 (1993)].

  14. V. N. Kozhevnikov, T. N. Bibikova, and E. V. Zhurba, “Orographic Disturbances of the Atmosphere over the Northern Ural,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, No. 5, 8 (1977) [Izv., Atmos. Oceanic Phys., No. 5, 8 (1977)].

  15. V. N. Kozhevnikov, T. N. Bibikova, and E. V. Zhurba, “Orographic Waves, Clouds and Rotors with a Horizontal Axis over the Crimea Mountains,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, No. 7, 22 (1986) [Izv., Atmos. Oceanic Phys., No. 7, 22 (1986)].

  16. V. N. Kozhevnikov and M. Kh. Memarian, “Orographic Disturbances and the Problem of Flight Safety over the Iranian Mountains,” Problemy Analiza Riska, No. 4, 3 (2007) [Problems of Risk Analysis, No. 4, 3 (2007)].

  17. V. N. Kozhevnikov and A. P. Pavlenko, “The Atmosphere Disturbances over Mountains and Flight Safety,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 29 (1993) [Izv., Atmos. Oceanic Phys., No. 3, 29 (1993)].

  18. G. P. Kurbatkin, L. R. Dmitrieva-Arrago, and S. A. Filatov, “Parametrization of Clouds in Hydrodynamic Models of Large-scale Atmospheric Movements,” Meteorol. Gidrol., No. 5 (1988) [Russ. Meteorol. Hydrol., No. 5 (1988)].

  19. E. M. Pekelis, “Numerical Calculation of Orographic Disturbances of Finite Amplitude (a Plane Two-dimensional Problem),” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, No. 11, 2 (1966) [Izv., Atmos. Oceanic Phys., No. 11, 2 (1966)].

  20. P. N. Tverskoi, Course of Meteorology (Gidrometeoizdat, Leningrad, 1951) [in Russian].

    Google Scholar 

  21. Zh. M. Hatukaeva and L. N. Gutman, “The Problem on the Cold Air Mass Getting over the Mountain Ridge with Allowance for the Air Density Decrease with Height,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 9 (1962) [Izv., Ser. Geophys., No. 9 (1962)].

  22. A. Kh. Khrgian, Atmospheric Physics (Mosk. Gos. Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  23. A. Kh. Khrgian and V. N. Kozhevnikov, “Cloud Forms and Sizes in the Leeward Orographic Waves,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, No. 9, 24 (1988) [Izv., Atmos. Oceanic Phys., No. 9, 24 (1988)].

  24. R. R. Long, “Some Aspects of the Flow of Stratified Fields. Continuous Density Gradients,” Tellus, No. 3, 7 (1955).

  25. G. Lyra, “Theorie der stationaren Leewellenstromung in freien Atmosphare,” Z. angew. Math. and Mech., H. 1, 23 (1943).

    Google Scholar 

  26. J. Smagorinsky, On the Dynamical Prediction of Large-scale Condensation by Numerical Methods, Monograph, American Geophysical Union, Physics of Precipitation, 5 (1960).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.H. Memarian, V.N. Kozhevnikov, L.R. Dmitrieva-Arrago, 2009, published in Meteorologiya i Gidrologiya, 2009, No. 9, pp. 60–71.

About this article

Cite this article

Memarian, M.H., Kozhevnikov, V.N. & Dmitrieva-Arrago, L.R. Wave clouds over mountains. Russ. Meteorol. Hydrol. 34, 604–612 (2009). https://doi.org/10.3103/S1068373909090052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373909090052

Keywords

Navigation